CatlikeCoding-Unity/Assets/Script/Fractal.cs

254 lines
8.0 KiB
C#

using Unity.Burst;
using Unity.Collections;
using Unity.Jobs;
using Unity.Mathematics;
using UnityEngine;
using Random = UnityEngine.Random;
using static Unity.Mathematics.math;
using quaternion = Unity.Mathematics.quaternion;
public class Fractal : MonoBehaviour
{
[BurstCompile(FloatPrecision.Standard, FloatMode.Fast, CompileSynchronously = true)]
private struct UpdateFractalLevelJob : IJobFor
{
public float scale;
public float deltaTime;
[ReadOnly]
public NativeArray<FractalPart> parents;
public NativeArray<FractalPart> parts;
[WriteOnly]
public NativeArray<float3x4> matrices;
public void Execute(int i)
{
var parent = parents[i / 5];
var part = parts[i];
part.spinAngle += part.spinVelocity * deltaTime;
float3 upAxis =
mul(mul(parent.worldRotation, part.rotation), up());
float3 sagAxis = cross(up(), upAxis);
float sagMagnitude = length(sagAxis);
quaternion baseRotation;
if (sagMagnitude > 0f)
{
sagAxis /= sagMagnitude;
quaternion sagRotation =
quaternion.AxisAngle(sagAxis, part.maxSagAngle * sagMagnitude);
baseRotation = mul(sagRotation, parent.worldRotation);
}
else
{
baseRotation = parent.worldRotation;
}
part.worldRotation = mul(baseRotation,
mul(part.rotation, quaternion.RotateY(part.spinAngle))
);
part.worldPosition =
parent.worldPosition +
mul(part.worldRotation, float3(0f, 1.5f * scale, 0f));
parts[i] = part;
float3x3 r = float3x3(part.worldRotation) * scale;
matrices[i] = float3x4(r.c0, r.c1, r.c2, part.worldPosition);
}
}
private struct FractalPart
{
public float3 worldPosition;
public quaternion rotation, worldRotation;
public float maxSagAngle, spinAngle, spinVelocity;
}
NativeArray<FractalPart>[] parts;
NativeArray<float3x4>[] matrices;
[SerializeField, Range(3, 8)]
int depth = 4;
[SerializeField]
Mesh mesh = default, leafMesh = default;
[SerializeField]
Material material = default;
[SerializeField]
Gradient gradientA = default, gradientB = default;
[SerializeField]
Color leafColorA = default, leafColorB = default;
[SerializeField, Range(0f, 90f)]
float maxSagAngleA = 15f, maxSagAngleB = 25f;
[SerializeField, Range(0f, 90f)]
float spinSpeedA = 20f, spinSpeedB = 25f;
[SerializeField, Range(0f, 1f)]
float reverseSpinChance = 0.25f;
static float3[] directions =
{
up(), right(), left(), forward(), back()
};
static quaternion[] rotations =
{
quaternion.identity,
quaternion.RotateZ(-0.5f * PI), quaternion.RotateZ(0.5f * PI),
quaternion.RotateX(0.5f * PI), quaternion.RotateX(-0.5f * PI)
};
private FractalPart CreatePart(int childIndex)
{
return new FractalPart()
{
maxSagAngle = radians(Random.Range(maxSagAngleA, maxSagAngleB)),
rotation = rotations[childIndex],
spinVelocity =
(Random.value < reverseSpinChance ? -1f : 1f) *
radians(Random.Range(spinSpeedA, spinSpeedB))
};
}
ComputeBuffer[] matricesBuffers;
Vector4[] sequenceNumbers;
static readonly int colorAId = Shader.PropertyToID("_ColorA");
static readonly int colorBId = Shader.PropertyToID("_ColorB");
static readonly int matricesId = Shader.PropertyToID("_Matrices");
static readonly int sequenceNumbersId = Shader.PropertyToID("_SequenceNumbers");
static MaterialPropertyBlock propertyBlock;
private void OnEnable()
{
parts = new NativeArray<FractalPart>[depth];
matrices = new NativeArray<float3x4>[depth];
matricesBuffers = new ComputeBuffer[depth];
sequenceNumbers = new Vector4[depth];
int stride = 12 * 4;
for (int i = 0, length = 1; i < parts.Length; i++, length *= 5)
{
parts[i] = new NativeArray<FractalPart>(length, Allocator.Persistent);
matrices[i] = new NativeArray<float3x4>(length, Allocator.Persistent);
matricesBuffers[i] = new ComputeBuffer(length, stride);
sequenceNumbers[i] = new Vector4(Random.value, Random.value, Random.value, Random.value);
}
parts[0][0] = CreatePart(0);
for (int li = 1; li < parts.Length; li++)
{
NativeArray<FractalPart> levelParts = parts[li];
for (int fpi = 0; fpi < levelParts.Length; fpi += 5)
{
for (int ci = 0; ci < 5; ci++)
{
levelParts[fpi + ci] = CreatePart(ci);
}
}
}
if (propertyBlock == null)
{
propertyBlock = new MaterialPropertyBlock();
}
}
private void OnDisable()
{
for (int i = 0; i < matricesBuffers.Length; i++)
{
matricesBuffers[i].Release();
parts[i].Dispose();
matrices[i].Dispose();
}
parts = null;
matrices = null;
matricesBuffers = null;
sequenceNumbers = null;
}
void OnValidate()
{
if (parts != null && enabled)
{
OnDisable();
OnEnable();
}
}
private void Update()
{
float deltaTime = Time.deltaTime;
FractalPart rootPart = parts[0][0];
rootPart.spinAngle += rootPart.spinVelocity * deltaTime;
rootPart.worldRotation = mul(transform.rotation,
mul(rootPart.rotation, quaternion.RotateY(rootPart.spinAngle))
);
rootPart.worldPosition = transform.position;
parts[0][0] = rootPart;
float objectScale = transform.lossyScale.x;
float3x3 r = float3x3(rootPart.worldRotation) * objectScale;
matrices[0][0] = float3x4(r.c0, r.c1, r.c2, rootPart.worldPosition);
float scale = objectScale;
JobHandle jobHandle = default;
for (int li = 1; li < parts.Length; li++)
{
scale *= 0.5f;
jobHandle = new UpdateFractalLevelJob
{
deltaTime = deltaTime,
scale = scale,
parents = parts[li - 1],
parts = parts[li],
matrices = matrices[li]
}.ScheduleParallel(parts[li].Length, 5, jobHandle);
}
jobHandle.Complete();
var bounds = new Bounds(rootPart.worldPosition, float3(3f * objectScale));
int leafIndex = matricesBuffers.Length - 1;
for (int i = 0; i < matricesBuffers.Length; i++)
{
Mesh instanceMesh;
Color colorA, colorB;
if (i == leafIndex)
{
colorA = leafColorA;
colorB = leafColorB;
instanceMesh = leafMesh;
}
else
{
colorA = gradientA.Evaluate(i / (matricesBuffers.Length - 2f));
colorB = gradientB.Evaluate(i / (matricesBuffers.Length - 2f));
instanceMesh = mesh;
}
propertyBlock.SetColor(colorAId, colorA);
propertyBlock.SetColor(colorBId, colorB);
ComputeBuffer buffer = matricesBuffers[i];
buffer.SetData(matrices[i]);
float gradientInterpolator = i / (matricesBuffers.Length - 1f);
propertyBlock.SetColor(colorAId, gradientA.Evaluate(gradientInterpolator));
propertyBlock.SetColor(colorBId, gradientB.Evaluate(gradientInterpolator));
propertyBlock.SetBuffer(matricesId, buffer);
propertyBlock.SetVector(sequenceNumbersId, sequenceNumbers[i]);
Graphics.DrawMeshInstancedProcedural(instanceMesh, 0, material, bounds, buffer.count, propertyBlock);
}
}
}