refactor(templates): refactor FAny to a non-template class

This commit is contained in:
_Redstone_c_ 2022-12-15 23:38:51 +08:00
parent 6b42dbdc05
commit a8e1852b34
3 changed files with 311 additions and 300 deletions

View File

@ -624,24 +624,6 @@ void TestAny()
TempZ = FTracker(); TempZ = FTracker();
} }
{
always_check(GetTypeHash(FAny(114)) == GetTypeHash(FAny(114)));
always_check(GetTypeHash(FAny(114)) != GetTypeHash(FAny(514)));
}
{
FAny TempA = Invalid;
FAny TempB = static_cast<int16>(16);
FAny TempC = static_cast<int32>(16);
FAny TempD = static_cast<int32>(32);
always_check(TempA == TempA);
always_check(TempA != TempB);
always_check(TempB != TempC);
always_check(TempB != TempC);
always_check(TempD >= TempC);
always_check(TempA <=> TempB == partial_ordering::unordered);
}
} }
void TestTuple() void TestTuple()

View File

@ -13,122 +13,67 @@ NAMESPACE_REDCRAFT_BEGIN
NAMESPACE_MODULE_BEGIN(Redcraft) NAMESPACE_MODULE_BEGIN(Redcraft)
NAMESPACE_MODULE_BEGIN(Utility) NAMESPACE_MODULE_BEGIN(Utility)
// TAny's CustomStorage concept, see FAnyDefaultStorage // NOTE: In the STL, the assignment operation of the std::any type uses the copy-and-swap idiom
template <typename T> // instead of directly calling the assignment operation of the contained value.
concept CAnyCustomStorage = CDefaultConstructible<T> // The purpose of this is as follows:
&& !CCopyConstructible<T> && !CMoveConstructible<T> // 1) the copy assignment might not exist.
&& !CCopyAssignable<T> && !CMoveAssignable<T> // 2) the typical case is that the objects are different.
&& CDestructible<T> // 3) it is less exception-safe
&& CSameAs<decltype(T::InlineSize), const size_t> // But we don't follow the the copy-and-swap idiom, because we assume that no function throws an exception.
&& CSameAs<decltype(T::InlineAlignment), const size_t>
&& requires(const T& A)
{
{ A.InlineAllocation() } -> CSameAs<const void*>;
{ A.HeapAllocation() } -> CSameAs<void*>;
{ A.TypeInfo() } -> CSameAs<uintptr>;
}
&& requires(T& A)
{
{ A.InlineAllocation() } -> CSameAs<void*>;
{ A.HeapAllocation() } -> CSameAs<void*&>;
{ A.TypeInfo() } -> CSameAs<uintptr&>;
}
&& requires(T& A, const T& B, T&& C)
{
A.CopyCustom(B);
A.MoveCustom(MoveTemp(C));
};
// TAny's default storage structure class alignas(16) FAny
struct alignas(16) FAnyDefaultStorage : FSingleton
{
// The built-in copy/move operators are disabled and CopyCustom/MoveCustom is used instead of them
// You can add custom variables like this
//Type Variable;
//~ Begin CAnyCustomStorage Interface
inline static constexpr size_t InlineSize = 64 - sizeof(uintptr);
inline static constexpr size_t InlineAlignment = 16;
constexpr void* InlineAllocation() { return &InlineAllocationImpl; }
constexpr const void* InlineAllocation() const { return &InlineAllocationImpl; }
constexpr void*& HeapAllocation() { return HeapAllocationImpl; }
constexpr void* HeapAllocation() const { return HeapAllocationImpl; }
constexpr uintptr& TypeInfo() { return TypeInfoImpl; }
constexpr uintptr TypeInfo() const { return TypeInfoImpl; }
constexpr void CopyCustom(const FAnyDefaultStorage& InValue) { /* Variable = InValue.Variable; */ } // You just need to copy the custom variables
constexpr void MoveCustom( FAnyDefaultStorage&& InValue) { /* Variable = MoveTemp(InValue.Variable); */ } // You just need to move the custom variables
//~ End CAnyCustomStorage Interface
union
{
uint8 InlineAllocationImpl[InlineSize];
void* HeapAllocationImpl;
};
uintptr TypeInfoImpl;
};
static_assert(CAnyCustomStorage<FAnyDefaultStorage>);
// You can add custom storage area through CustomStorage, such as TFunction
// It is not recommended to use this, FAny is recommended
template <CAnyCustomStorage CustomStorage>
class TAny
{ {
public: public:
inline static constexpr size_t InlineSize = CustomStorage::InlineSize; FORCEINLINE constexpr FAny() { Invalidate(); }
inline static constexpr size_t InlineAlignment = CustomStorage::InlineAlignment;
constexpr TAny() { Storage.TypeInfo() = 0; } FORCEINLINE constexpr FAny(FInvalid) : FAny() { }
constexpr TAny(FInvalid) : TAny() { } FORCEINLINE FAny(const FAny& InValue)
: TypeInfo(InValue.TypeInfo)
FORCEINLINE TAny(const TAny& InValue)
{ {
Storage.CopyCustom(InValue.Storage);
Storage.TypeInfo() = InValue.Storage.TypeInfo();
if (!IsValid()) return; if (!IsValid()) return;
switch (GetRepresentation()) switch (GetRepresentation())
{ {
case ERepresentation::Empty:
break;
case ERepresentation::Trivial: case ERepresentation::Trivial:
Memory::Memcpy(Storage.InlineAllocation(), InValue.Storage.InlineAllocation(), Storage.InlineSize); Memory::Memcpy(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
break; break;
case ERepresentation::Small: case ERepresentation::Small:
GetTypeInfoImpl().CopyConstructImpl(GetAllocation(), InValue.GetAllocation()); SmallStorage.RTTI = InValue.SmallStorage.RTTI;
SmallStorage.RTTI->CopyConstruct(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break; break;
case ERepresentation::Big: case ERepresentation::Big:
Storage.HeapAllocation() = Memory::Malloc(GetTypeInfoImpl().TypeSize, GetTypeInfoImpl().TypeAlignment); BigStorage.RTTI = InValue.BigStorage.RTTI;
GetTypeInfoImpl().CopyConstructImpl(GetAllocation(), InValue.GetAllocation()); BigStorage.External = Memory::Malloc(BigStorage.RTTI->TypeSize, BigStorage.RTTI->TypeAlignment);
BigStorage.RTTI->CopyConstruct(BigStorage.External, InValue.BigStorage.External);
break; break;
default: check_no_entry(); default: check_no_entry();
} }
} }
FORCEINLINE TAny(TAny&& InValue) FORCEINLINE FAny(FAny&& InValue)
: TypeInfo(InValue.TypeInfo)
{ {
Storage.MoveCustom(MoveTemp(InValue.Storage));
Storage.TypeInfo() = InValue.Storage.TypeInfo();
if (!IsValid()) return; if (!IsValid()) return;
switch (GetRepresentation()) switch (GetRepresentation())
{ {
case ERepresentation::Empty:
break;
case ERepresentation::Trivial: case ERepresentation::Trivial:
Memory::Memcpy(Storage.InlineAllocation(), InValue.Storage.InlineAllocation(), Storage.InlineSize); Memory::Memmove(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
break; break;
case ERepresentation::Small: case ERepresentation::Small:
GetTypeInfoImpl().MoveConstructImpl(GetAllocation(), InValue.GetAllocation()); SmallStorage.RTTI = InValue.SmallStorage.RTTI;
SmallStorage.RTTI->MoveConstruct(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break; break;
case ERepresentation::Big: case ERepresentation::Big:
Storage.HeapAllocation() = InValue.Storage.HeapAllocation(); BigStorage.RTTI = InValue.BigStorage.RTTI;
InValue.Storage.TypeInfo() = 0; BigStorage.External = InValue.BigStorage.External;
InValue.Invalidate();
break; break;
default: check_no_entry(); default: check_no_entry();
} }
@ -136,28 +81,25 @@ public:
template <typename T, typename... Ts> requires (CDestructible<TDecay<T>> template <typename T, typename... Ts> requires (CDestructible<TDecay<T>>
&& CConstructibleFrom<TDecay<T>, Ts&&...>) && CConstructibleFrom<TDecay<T>, Ts&&...>)
FORCEINLINE explicit TAny(TInPlaceType<T>, Ts&&... Args) FORCEINLINE explicit FAny(TInPlaceType<T>, Ts&&... Args)
{ {
using SelectedType = TDecay<T>; EmplaceImpl<T>(Forward<Ts>(Args)...);
EmplaceImpl<SelectedType>(Forward<Ts>(Args)...);
} }
template <typename T> requires (!CBaseOf<TAny, TDecay<T>> && !CTInPlaceType<TDecay<T>> template <typename T> requires (!CBaseOf<FAny, TDecay<T>> && !CTInPlaceType<TDecay<T>>
&& CDestructible<TDecay<T>> && CConstructibleFrom<TDecay<T>, T&&>) && CDestructible<TDecay<T>> && CConstructibleFrom<TDecay<T>, T&&>)
FORCEINLINE TAny(T&& InValue) : TAny(InPlaceType<TDecay<T>>, Forward<T>(InValue)) FORCEINLINE FAny(T&& InValue) : FAny(InPlaceType<TDecay<T>>, Forward<T>(InValue))
{ } { }
FORCEINLINE ~TAny() FORCEINLINE ~FAny()
{ {
ResetImpl(); Destroy();
} }
FORCEINLINE TAny& operator=(const TAny& InValue) FORCEINLINE FAny& operator=(const FAny& InValue)
{ {
if (&InValue == this) return *this; if (&InValue == this) return *this;
Storage.CopyCustom(InValue.Storage);
if (!InValue.IsValid()) if (!InValue.IsValid())
{ {
Reset(); Reset();
@ -166,33 +108,43 @@ public:
{ {
switch (GetRepresentation()) switch (GetRepresentation())
{ {
case ERepresentation::Empty:
break;
case ERepresentation::Trivial: case ERepresentation::Trivial:
Memory::Memcpy(Storage.InlineAllocation(), InValue.Storage.InlineAllocation(), Storage.InlineSize); Memory::Memcpy(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
break; break;
case ERepresentation::Small: case ERepresentation::Small:
SmallStorage.RTTI = InValue.SmallStorage.RTTI;
SmallStorage.RTTI->CopyAssign(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break;
case ERepresentation::Big: case ERepresentation::Big:
GetTypeInfoImpl().CopyAssignImpl(GetAllocation(), InValue.GetAllocation()); BigStorage.RTTI = InValue.BigStorage.RTTI;
BigStorage.RTTI->CopyAssign(BigStorage.External, InValue.BigStorage.External);
break; break;
default: check_no_entry(); default: check_no_entry();
} }
} }
else else
{ {
ResetImpl(); Destroy();
Storage.TypeInfo() = InValue.Storage.TypeInfo(); TypeInfo = InValue.TypeInfo;
switch (GetRepresentation()) switch (GetRepresentation())
{ {
case ERepresentation::Empty:
break;
case ERepresentation::Trivial: case ERepresentation::Trivial:
Memory::Memcpy(Storage.InlineAllocation(), InValue.Storage.InlineAllocation(), Storage.InlineSize); Memory::Memcpy(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
break; break;
case ERepresentation::Small: case ERepresentation::Small:
GetTypeInfoImpl().CopyConstructImpl(GetAllocation(), InValue.GetAllocation()); SmallStorage.RTTI = InValue.SmallStorage.RTTI;
SmallStorage.RTTI->CopyConstruct(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break; break;
case ERepresentation::Big: case ERepresentation::Big:
Storage.HeapAllocation() = Memory::Malloc(GetTypeInfoImpl().TypeSize, GetTypeInfoImpl().TypeAlignment); BigStorage.RTTI = InValue.BigStorage.RTTI;
GetTypeInfoImpl().CopyConstructImpl(GetAllocation(), InValue.GetAllocation()); BigStorage.External = Memory::Malloc(BigStorage.RTTI->TypeSize, BigStorage.RTTI->TypeAlignment);
BigStorage.RTTI->CopyConstruct(BigStorage.External, InValue.BigStorage.External);
break; break;
default: check_no_entry(); default: check_no_entry();
} }
@ -201,12 +153,10 @@ public:
return *this; return *this;
} }
FORCEINLINE TAny& operator=(TAny&& InValue) FORCEINLINE FAny& operator=(FAny&& InValue)
{ {
if (&InValue == this) return *this; if (&InValue == this) return *this;
Storage.MoveCustom(MoveTemp(InValue.Storage));
if (!InValue.IsValid()) if (!InValue.IsValid())
{ {
Reset(); Reset();
@ -215,37 +165,45 @@ public:
{ {
switch (GetRepresentation()) switch (GetRepresentation())
{ {
case ERepresentation::Empty:
break;
case ERepresentation::Trivial: case ERepresentation::Trivial:
Memory::Memcpy(Storage.InlineAllocation(), InValue.Storage.InlineAllocation(), Storage.InlineSize); Memory::Memmove(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
break; break;
case ERepresentation::Small: case ERepresentation::Small:
GetTypeInfoImpl().MoveAssignImpl(GetAllocation(), InValue.GetAllocation()); SmallStorage.RTTI = InValue.SmallStorage.RTTI;
SmallStorage.RTTI->MoveAssign(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break; break;
case ERepresentation::Big: case ERepresentation::Big:
ResetImpl(); Destroy();
Storage.HeapAllocation() = InValue.Storage.HeapAllocation(); BigStorage.RTTI = InValue.BigStorage.RTTI;
InValue.Storage.TypeInfo() = 0; BigStorage.External = InValue.BigStorage.External;
InValue.Invalidate();
break; break;
default: check_no_entry(); default: check_no_entry();
} }
} }
else else
{ {
ResetImpl(); Destroy();
Storage.TypeInfo() = InValue.Storage.TypeInfo(); TypeInfo = InValue.TypeInfo;
switch (GetRepresentation()) switch (GetRepresentation())
{ {
case ERepresentation::Empty:
break;
case ERepresentation::Trivial: case ERepresentation::Trivial:
Memory::Memcpy(Storage.InlineAllocation(), InValue.Storage.InlineAllocation(), Storage.InlineSize); Memory::Memmove(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
break; break;
case ERepresentation::Small: case ERepresentation::Small:
GetTypeInfoImpl().MoveConstructImpl(GetAllocation(), InValue.GetAllocation()); SmallStorage.RTTI = InValue.SmallStorage.RTTI;
SmallStorage.RTTI->MoveConstruct(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break; break;
case ERepresentation::Big: case ERepresentation::Big:
Storage.HeapAllocation() = InValue.Storage.HeapAllocation(); BigStorage.RTTI = InValue.BigStorage.RTTI;
InValue.Storage.TypeInfo() = 0; BigStorage.External = InValue.BigStorage.External;
InValue.Invalidate();
break; break;
default: check_no_entry(); default: check_no_entry();
} }
@ -254,20 +212,20 @@ public:
return *this; return *this;
} }
template <typename T> requires (!CBaseOf<TAny, TDecay<T>> && !CTInPlaceType<TDecay<T>> template <typename T> requires (!CBaseOf<FAny, TDecay<T>> && !CTInPlaceType<TDecay<T>>
&& CDestructible<TDecay<T>> && CConstructibleFrom<TDecay<T>, T&&>) && CDestructible<TDecay<T>>&& CConstructibleFrom<TDecay<T>, T&&>)
FORCEINLINE TAny& operator=(T&& InValue) FORCEINLINE FAny& operator=(T&& InValue)
{ {
using SelectedType = TDecay<T>; using DecayedType = TDecay<T>;
if (HoldsAlternative<SelectedType>()) if (HoldsAlternative<DecayedType>())
{ {
GetValue<SelectedType>() = Forward<T>(InValue); GetValue<DecayedType>() = Forward<T>(InValue);
} }
else else
{ {
ResetImpl(); Destroy();
EmplaceImpl<SelectedType>(Forward<T>(InValue)); EmplaceImpl<DecayedType>(Forward<T>(InValue));
} }
return *this; return *this;
@ -277,55 +235,43 @@ public:
&& CConstructibleFrom<TDecay<T>, Ts&&...>) && CConstructibleFrom<TDecay<T>, Ts&&...>)
FORCEINLINE TDecay<T>& Emplace(Ts&&... Args) FORCEINLINE TDecay<T>& Emplace(Ts&&... Args)
{ {
ResetImpl(); Destroy();
EmplaceImpl<T>(Forward<Ts>(Args)...);
using SelectedType = TDecay<T>; return GetValue<TDecay<T>>();
EmplaceImpl<SelectedType>(Forward<Ts>(Args)...);
return GetValue<SelectedType>();
} }
constexpr const type_info& GetTypeInfo() const { return IsValid() ? *GetTypeInfoImpl().NativeTypeInfo : typeid(void); } FORCEINLINE constexpr const type_info& GetTypeInfo() const { return IsValid() ? GetTypeInfoImpl() : typeid(void); }
constexpr bool IsValid() const { return Storage.TypeInfo() != 0; } FORCEINLINE constexpr bool IsValid() const { return TypeInfo != 0; }
constexpr explicit operator bool() const { return Storage.TypeInfo() != 0; } FORCEINLINE constexpr explicit operator bool() const { return TypeInfo != 0; }
template <typename T> constexpr bool HoldsAlternative() const { return IsValid() ? GetTypeInfo() == typeid(T) : false; } template <typename T> FORCEINLINE constexpr bool HoldsAlternative() const { return IsValid() ? GetTypeInfo() == typeid(T) : false; }
template <typename T> requires (CDestructible<TDecay<T>>) template <typename T> requires (CSameAs<T, TDecay<T>>&& CDestructible<TDecay<T>>)
constexpr T& GetValue() & { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return *reinterpret_cast< T*>(GetAllocation()); } FORCEINLINE constexpr T& GetValue() & { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return *reinterpret_cast< T*>(GetStorage()); }
template <typename T> requires (CDestructible<TDecay<T>>) template <typename T> requires (CSameAs<T, TDecay<T>>&& CDestructible<TDecay<T>>)
constexpr T&& GetValue() && { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return MoveTemp(*reinterpret_cast< T*>(GetAllocation())); } FORCEINLINE constexpr T&& GetValue() && { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return MoveTemp(*reinterpret_cast< T*>(GetStorage())); }
template <typename T> requires (CDestructible<TDecay<T>>) template <typename T> requires (CSameAs<T, TDecay<T>>&& CDestructible<TDecay<T>>)
constexpr const T& GetValue() const& { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return *reinterpret_cast<const T*>(GetAllocation()); } FORCEINLINE constexpr const T& GetValue() const& { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return *reinterpret_cast<const T*>(GetStorage()); }
template <typename T> requires (CDestructible<TDecay<T>>) template <typename T> requires (CSameAs<T, TDecay<T>>&& CDestructible<TDecay<T>>)
constexpr const T&& GetValue() const&& { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return MoveTemp(*reinterpret_cast<const T*>(GetAllocation())); } FORCEINLINE constexpr const T&& GetValue() const&& { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return MoveTemp(*reinterpret_cast<const T*>(GetStorage())); }
template <typename T> requires (CSameAs<T, TDecay<T>> && CDestructible<TDecay<T>>) template <typename T> requires (CSameAs<T, TDecay<T>> && CDestructible<TDecay<T>>)
constexpr T& Get( T& DefaultValue) & { return HoldsAlternative<T>() ? GetValue<T>() : DefaultValue; } FORCEINLINE constexpr T& Get( T& DefaultValue) & { return HoldsAlternative<T>() ? GetValue<T>() : DefaultValue; }
template <typename T> requires (CSameAs<T, TDecay<T>> && CDestructible<TDecay<T>>) template <typename T> requires (CSameAs<T, TDecay<T>> && CDestructible<TDecay<T>>)
constexpr const T& Get(const T& DefaultValue) const& { return HoldsAlternative<T>() ? GetValue<T>() : DefaultValue; } FORCEINLINE constexpr const T& Get(const T& DefaultValue) const& { return HoldsAlternative<T>() ? GetValue<T>() : DefaultValue; }
constexpr CustomStorage& GetCustomStorage() requires (!CSameAs<CustomStorage, FAnyDefaultStorage>) { return Storage; }
constexpr const CustomStorage& GetCustomStorage() const requires (!CSameAs<CustomStorage, FAnyDefaultStorage>) { return Storage; }
FORCEINLINE void Reset() FORCEINLINE void Reset()
{ {
ResetImpl(); Destroy();
Storage.TypeInfo() = 0; Invalidate();
} }
FORCEINLINE size_t GetTypeHash() const FORCEINLINE void Swap(FAny& InValue)
{
using NAMESPACE_REDCRAFT::GetTypeHash;
if (!IsValid()) return 20090007;
return HashCombine(GetTypeHash(GetTypeInfo()), GetTypeInfoImpl().HashImpl(GetAllocation()));
}
FORCEINLINE void Swap(TAny& InValue)
{ {
if (!IsValid() && !InValue.IsValid()) return; if (!IsValid() && !InValue.IsValid()) return;
@ -345,170 +291,253 @@ public:
if (GetTypeInfo() == InValue.GetTypeInfo()) if (GetTypeInfo() == InValue.GetTypeInfo())
{ {
GetTypeInfoImpl().SwapImpl(GetAllocation(), InValue.GetAllocation()); switch (GetRepresentation())
{
case ERepresentation::Empty:
break;
case ERepresentation::Trivial:
uint8 Buffer[sizeof(TrivialStorage.Internal)];
Memory::Memmove(Buffer, TrivialStorage.Internal);
Memory::Memmove(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
Memory::Memmove(InValue.TrivialStorage.Internal, Buffer);
break;
case ERepresentation::Small:
SmallStorage.RTTI->SwapObject(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break;
case ERepresentation::Big:
NAMESPACE_REDCRAFT::Swap(BigStorage.External, InValue.BigStorage.External);
break;
default: check_no_entry();
}
return; return;
} }
TAny Temp = MoveTemp(*this); FAny Temp = MoveTemp(*this);
*this = MoveTemp(InValue); *this = MoveTemp(InValue);
InValue = MoveTemp(Temp); InValue = MoveTemp(Temp);
} }
private: private:
CustomStorage Storage; struct FRTTI
static constexpr uintptr_t RepresentationMask = 3;
enum class ERepresentation : uint8
{ {
Trivial, // Trivial & Inline
Small, // InlineAllocation
Big, // HeapAllocation
};
struct FTypeInfoImpl
{
const type_info* NativeTypeInfo;
const size_t TypeSize; const size_t TypeSize;
const size_t TypeAlignment; const size_t TypeAlignment;
using FCopyConstructImpl = void(*)(void*, const void*); using FCopyConstruct = void(*)(void*, const void*);
using FMoveConstructImpl = void(*)(void*, void*); using FMoveConstruct = void(*)(void*, void*);
using FCopyAssignImpl = void(*)(void*, const void*); using FCopyAssign = void(*)(void*, const void*);
using FMoveAssignImpl = void(*)(void*, void*); using FMoveAssign = void(*)(void*, void*);
using FDestroyImpl = void(*)(void* ); using FDestruct = void(*)(void* );
using FSwapObject = void(*)(void*, void*);
using FEqualityCompareImpl = bool (*)(const void*, const void*); const FCopyConstruct CopyConstruct;
using FSynthThreeWayCompareImpl = partial_ordering (*)(const void*, const void*); const FMoveConstruct MoveConstruct;
using FHashImpl = size_t (*)(const void* ); const FCopyAssign CopyAssign;
using FSwapImpl = void (*)( void*, void*); const FMoveAssign MoveAssign;
const FDestruct Destruct;
const FCopyConstructImpl CopyConstructImpl; const FSwapObject SwapObject;
const FMoveConstructImpl MoveConstructImpl;
const FCopyAssignImpl CopyAssignImpl;
const FMoveAssignImpl MoveAssignImpl;
const FDestroyImpl DestroyImpl;
const FEqualityCompareImpl EqualityCompareImpl;
const FSynthThreeWayCompareImpl SynthThreeWayCompareImpl;
const FHashImpl HashImpl;
const FSwapImpl SwapImpl;
template <typename T> template <typename T>
constexpr FTypeInfoImpl(TInPlaceType<T>) FORCEINLINE constexpr FRTTI(TInPlaceType<T>)
: TypeSize( sizeof(T)), TypeAlignment(alignof(T))
: NativeTypeInfo (&typeid(T)) , CopyConstruct(
, TypeSize ( sizeof(T)) [](void* A, const void* B)
, TypeAlignment (alignof(T)) {
new (A) T(*reinterpret_cast<const T*>(B));
, CopyConstructImpl ([](void* A, const void* B) { if constexpr (requires(T* A, const T* B) { Memory::CopyConstruct (A, B); }) Memory::CopyConstruct (reinterpret_cast<T*>(A), reinterpret_cast<const T*>(B)); else checkf(false, TEXT("The type '%s' is not copy constructible."), typeid(T).name()); }) }
, MoveConstructImpl ([](void* A, void* B) { if constexpr (requires(T* A, T* B) { Memory::MoveConstruct (A, B); }) Memory::MoveConstruct (reinterpret_cast<T*>(A), reinterpret_cast< T*>(B)); else checkf(false, TEXT("The type '%s' is not move constructible."), typeid(T).name()); }) )
, CopyAssignImpl ([](void* A, const void* B) { if constexpr (requires(T* A, const T* B) { Memory::CopyAssign (A, B); }) Memory::CopyAssign (reinterpret_cast<T*>(A), reinterpret_cast<const T*>(B)); else checkf(false, TEXT("The type '%s' is not copy assignable."), typeid(T).name()); }) , MoveConstruct(
, MoveAssignImpl ([](void* A, void* B) { if constexpr (requires(T* A, T* B) { Memory::MoveAssign (A, B); }) Memory::MoveAssign (reinterpret_cast<T*>(A), reinterpret_cast< T*>(B)); else checkf(false, TEXT("The type '%s' is not move assignable."), typeid(T).name()); }) [](void* A, void* B)
, DestroyImpl ([](void* A ) { if constexpr (requires(T* A ) { Memory::Destruct (A ); }) Memory::Destruct (reinterpret_cast<T*>(A) ); else checkf(false, TEXT("The type '%s' is not destructible."), typeid(T).name()); }) {
new (A) T(MoveTemp(*reinterpret_cast<T*>(B)));
, EqualityCompareImpl ([](const void* A, const void* B) -> bool { if constexpr (CEqualityComparable<T> ) return (*reinterpret_cast<const T*>(A) == *reinterpret_cast<const T*>(B)); else checkf(false, TEXT("The type '%s' is not equality comparable."), typeid(T).name()); return false; }) }
, SynthThreeWayCompareImpl ([](const void* A, const void* B) -> partial_ordering { if constexpr (CSynthThreeWayComparable<T>) return NAMESPACE_REDCRAFT::SynthThreeWayCompare (*reinterpret_cast<const T*>(A), *reinterpret_cast<const T*>(B)); else checkf(false, TEXT("The type '%s' is not synth three-way comparable."), typeid(T).name()); return partial_ordering::unordered; }) )
, HashImpl ([](const void* A ) -> size_t { if constexpr (CHashable<T> ) return NAMESPACE_REDCRAFT::GetTypeHash (*reinterpret_cast<const T*>(A) ); else checkf(false, TEXT("The type '%s' is not hashable."), typeid(T).name()); return 1080551797; }) , CopyAssign(
, SwapImpl ([]( void* A, void* B) -> void { if constexpr (CSwappable<T> ) NAMESPACE_REDCRAFT::Swap (*reinterpret_cast< T*>(A), *reinterpret_cast< T*>(B)); else checkf(false, TEXT("The type '%s' is not swappable."), typeid(T).name()); }) [](void* A, const void* B)
{
if constexpr (CCopyAssignable<T>)
{
*reinterpret_cast<T*>(A) = *reinterpret_cast<const T*>(B);
}
else
{
reinterpret_cast<T*>(A)->~T();
new (A) T(*reinterpret_cast<const T*>(B));
}
}
)
, MoveAssign(
[](void* A, void* B)
{
if constexpr (CMoveAssignable<T>)
{
*reinterpret_cast<T*>(A) = MoveTemp(*reinterpret_cast<T*>(B));
}
else
{
reinterpret_cast<T*>(A)->~T();
new (A) T(MoveTemp(*reinterpret_cast<T*>(B)));
}
}
)
, Destruct(
[](void* A)
{
reinterpret_cast<T*>(A)->~T();
}
)
, SwapObject{
[](void* A, void* B)
{
NAMESPACE_REDCRAFT::Swap(*reinterpret_cast<T*>(A), *reinterpret_cast<T*>(B));
}
}
{ } { }
}; };
constexpr ERepresentation GetRepresentation() const { return static_cast<ERepresentation>(Storage.TypeInfo() & RepresentationMask); } struct FTrivialStorage
constexpr const FTypeInfoImpl& GetTypeInfoImpl() const { return *reinterpret_cast<const FTypeInfoImpl*>(Storage.TypeInfo() & ~RepresentationMask); }
constexpr void* GetAllocation() { return GetRepresentation() == ERepresentation::Trivial || GetRepresentation() == ERepresentation::Small ? Storage.InlineAllocation() : Storage.HeapAllocation(); }
constexpr const void* GetAllocation() const { return GetRepresentation() == ERepresentation::Trivial || GetRepresentation() == ERepresentation::Small ? Storage.InlineAllocation() : Storage.HeapAllocation(); }
template <typename SelectedType, typename... Ts>
FORCEINLINE void EmplaceImpl(Ts&&... Args)
{ {
static constexpr const FTypeInfoImpl SelectedTypeInfo(InPlaceType<SelectedType>); uint8 Internal[64 - sizeof(uintptr)];
Storage.TypeInfo() = reinterpret_cast<uintptr>(&SelectedTypeInfo); };
constexpr bool bIsInlineStorable = sizeof(SelectedType) <= Storage.InlineSize && alignof(SelectedType) <= Storage.InlineAlignment; struct FSmallStorage
constexpr bool bIsTriviallyStorable = bIsInlineStorable && CTrivial<SelectedType> && CTriviallyCopyable<SelectedType>; {
uint8 Internal[sizeof(FTrivialStorage) - sizeof(const FRTTI*)];
const FRTTI* RTTI;
};
if constexpr (bIsTriviallyStorable) struct FBigStorage
{
uint8 Padding[sizeof(FTrivialStorage) - sizeof(void*) - sizeof(const FRTTI*)];
void* External;
const FRTTI* RTTI;
};
static_assert(sizeof(FTrivialStorage) == sizeof(FSmallStorage));
static_assert(sizeof(FTrivialStorage) == sizeof( FBigStorage));
static_assert(alignof(type_info) >= 4);
static constexpr uintptr_t RepresentationMask = 3;
enum class ERepresentation : uintptr
{
Empty = 0, // EmptyType
Trivial = 1, // TrivialStorage
Small = 2, // SmallStorage
Big = 3, // BigStorage
};
union
{
FTrivialStorage TrivialStorage;
FSmallStorage SmallStorage;
FBigStorage BigStorage;
};
uintptr TypeInfo;
FORCEINLINE ERepresentation GetRepresentation() const { return static_cast<ERepresentation>(TypeInfo & RepresentationMask); }
FORCEINLINE const type_info& GetTypeInfoImpl() const { return *reinterpret_cast<const type_info*>(TypeInfo & ~RepresentationMask); }
FORCEINLINE void* GetStorage()
{
switch (GetRepresentation())
{ {
new(Storage.InlineAllocation()) SelectedType(Forward<Ts>(Args)...); case ERepresentation::Empty: return nullptr;
Storage.TypeInfo() |= static_cast<uintptr>(ERepresentation::Trivial); case ERepresentation::Trivial: return &TrivialStorage.Internal;
} case ERepresentation::Small: return &SmallStorage.Internal;
else if constexpr (bIsInlineStorable) case ERepresentation::Big: return BigStorage.External;
{ default: check_no_entry(); return nullptr;
new(Storage.InlineAllocation()) SelectedType(Forward<Ts>(Args)...);
Storage.TypeInfo() |= static_cast<uintptr>(ERepresentation::Small);
}
else
{
Storage.HeapAllocation() = new SelectedType(Forward<Ts>(Args)...);
Storage.TypeInfo() |= static_cast<uintptr>(ERepresentation::Big);
} }
} }
FORCEINLINE void ResetImpl() FORCEINLINE const void* GetStorage() const
{
switch (GetRepresentation())
{
case ERepresentation::Empty: return nullptr;
case ERepresentation::Trivial: return &TrivialStorage.Internal;
case ERepresentation::Small: return &SmallStorage.Internal;
case ERepresentation::Big: return BigStorage.External;
default: check_no_entry(); return nullptr;
}
}
template <typename T, typename... Ts>
FORCEINLINE void EmplaceImpl(Ts&&... Args)
{
using DecayedType = TDecay<T>;
TypeInfo = reinterpret_cast<uintptr>(&typeid(DecayedType));
if constexpr (CEmpty<DecayedType> && CTrivial<DecayedType>) return; // ERepresentation::Empty
constexpr bool bIsTriviallyStorable = sizeof(DecayedType) <= sizeof(TrivialStorage.Internal) && alignof(DecayedType) <= alignof(FAny) && CTriviallyCopyable<DecayedType>;
constexpr bool bIsSmallStorable = sizeof(DecayedType) <= sizeof( SmallStorage.Internal) && alignof(DecayedType) <= alignof(FAny);
static constexpr const FRTTI SelectedRTTI(InPlaceType<DecayedType>);
if constexpr (bIsTriviallyStorable)
{
new (&TrivialStorage.Internal) DecayedType(Forward<Ts>(Args)...);
TypeInfo |= static_cast<uintptr>(ERepresentation::Trivial);
}
else if constexpr (bIsSmallStorable)
{
new (&SmallStorage.Internal) DecayedType(Forward<Ts>(Args)...);
SmallStorage.RTTI = &SelectedRTTI;
TypeInfo |= static_cast<uintptr>(ERepresentation::Small);
}
else
{
BigStorage.External = Memory::Malloc(sizeof(DecayedType), alignof(DecayedType));
new (BigStorage.External) DecayedType(Forward<Ts>(Args)...);
BigStorage.RTTI = &SelectedRTTI;
TypeInfo |= static_cast<uintptr>(ERepresentation::Big);
}
}
FORCEINLINE void Destroy()
{ {
if (!IsValid()) return; if (!IsValid()) return;
switch (GetRepresentation()) switch (GetRepresentation())
{ {
case ERepresentation::Empty:
case ERepresentation::Trivial: case ERepresentation::Trivial:
break; break;
case ERepresentation::Small: case ERepresentation::Small:
GetTypeInfoImpl().DestroyImpl(GetAllocation()); SmallStorage.RTTI->Destruct(&SmallStorage.Internal);
break; break;
case ERepresentation::Big: case ERepresentation::Big:
GetTypeInfoImpl().DestroyImpl(GetAllocation()); BigStorage.RTTI->Destruct(BigStorage.External);
Memory::Free(Storage.HeapAllocation()); Memory::Free(BigStorage.External);
break; break;
default: check_no_entry(); default: check_no_entry();
} }
} }
friend FORCEINLINE bool operator==(const TAny& LHS, const TAny& RHS) FORCEINLINE constexpr void Invalidate() { TypeInfo = 0; }
template <typename T> requires (!CBaseOf<FAny, TRemoveCVRef<T>>)
friend FORCEINLINE constexpr bool operator==(const FAny& LHS, const T& RHS)
{ {
if (LHS.GetTypeInfo() != RHS.GetTypeInfo()) return false; return LHS.template HoldsAlternative<T>() ? LHS.template GetValue<T>() == RHS : false;
if (LHS.IsValid() == false) return true;
return LHS.GetTypeInfoImpl().EqualityCompareImpl(LHS.GetAllocation(), RHS.GetAllocation());
} }
friend FORCEINLINE partial_ordering operator<=>(const TAny& LHS, const TAny& RHS) friend FORCEINLINE constexpr bool operator==(const FAny& LHS, FInvalid)
{ {
if (LHS.GetTypeInfo() != RHS.GetTypeInfo()) return partial_ordering::unordered; return !LHS.IsValid();
if (LHS.IsValid() == false) return partial_ordering::equivalent;
return LHS.GetTypeInfoImpl().SynthThreeWayCompareImpl(LHS.GetAllocation(), RHS.GetAllocation());;
} }
}; };
class FAny : STRONG_INHERIT(TAny<FAnyDefaultStorage>);
static_assert(sizeof(FAny) == 64, "The byte size of FAny is unexpected"); static_assert(sizeof(FAny) == 64, "The byte size of FAny is unexpected");
template <typename T, CAnyCustomStorage StorageType> requires (!CBaseOf<FAny, TRemoveCVRef<T>>) static_assert(alignof(FAny) == 16, "The byte alignment of FAny is unexpected");
constexpr bool operator==(const TAny<StorageType>& LHS, const T& RHS)
{
return LHS.template HoldsAlternative<T>() ? LHS.template GetValue<T>() == RHS : false;
}
template <CAnyCustomStorage StorageType>
constexpr bool operator==(const TAny<StorageType>& LHS, FInvalid)
{
return !LHS.IsValid();
}
NAMESPACE_PRIVATE_BEGIN
template <typename T> struct TIsTAny : FFalse { };
template <CAnyCustomStorage StorageType> struct TIsTAny<TAny<StorageType>> : FTrue { };
NAMESPACE_PRIVATE_END
template <typename T>
concept CTAny = NAMESPACE_PRIVATE::TIsTAny<TRemoveCV<T>>::Value;
NAMESPACE_MODULE_END(Utility) NAMESPACE_MODULE_END(Utility)
NAMESPACE_MODULE_END(Redcraft) NAMESPACE_MODULE_END(Redcraft)

View File

@ -321,15 +321,6 @@ public:
private: private:
union
{
uint8 InternalStorage[64 - sizeof(uintptr) - sizeof(uintptr)];
void* ExternalStorage;
};
uintptr RTTI;
uintptr Callable;
struct FMovableRTTI struct FMovableRTTI
{ {
const size_t TypeSize; const size_t TypeSize;
@ -391,6 +382,15 @@ private:
Big = 3, // ExternalStorage Big = 3, // ExternalStorage
}; };
union
{
uint8 InternalStorage[64 - sizeof(uintptr) - sizeof(uintptr)];
void* ExternalStorage;
};
uintptr RTTI;
uintptr Callable;
FORCEINLINE constexpr ERepresentation GetRepresentation() const { return static_cast<ERepresentation>(RTTI & RepresentationMask); } FORCEINLINE constexpr ERepresentation GetRepresentation() const { return static_cast<ERepresentation>(RTTI & RepresentationMask); }
FORCEINLINE constexpr const FRTTI& GetRTTI() const { return *reinterpret_cast<const FRTTI*>(RTTI & ~RepresentationMask); } FORCEINLINE constexpr const FRTTI& GetRTTI() const { return *reinterpret_cast<const FRTTI*>(RTTI & ~RepresentationMask); }