refactor(templates): refactor FAny to a non-template class

This commit is contained in:
_Redstone_c_ 2022-12-15 23:38:51 +08:00
parent 6b42dbdc05
commit a8e1852b34
3 changed files with 311 additions and 300 deletions

View File

@ -624,24 +624,6 @@ void TestAny()
TempZ = FTracker();
}
{
always_check(GetTypeHash(FAny(114)) == GetTypeHash(FAny(114)));
always_check(GetTypeHash(FAny(114)) != GetTypeHash(FAny(514)));
}
{
FAny TempA = Invalid;
FAny TempB = static_cast<int16>(16);
FAny TempC = static_cast<int32>(16);
FAny TempD = static_cast<int32>(32);
always_check(TempA == TempA);
always_check(TempA != TempB);
always_check(TempB != TempC);
always_check(TempB != TempC);
always_check(TempD >= TempC);
always_check(TempA <=> TempB == partial_ordering::unordered);
}
}
void TestTuple()

View File

@ -13,122 +13,67 @@ NAMESPACE_REDCRAFT_BEGIN
NAMESPACE_MODULE_BEGIN(Redcraft)
NAMESPACE_MODULE_BEGIN(Utility)
// TAny's CustomStorage concept, see FAnyDefaultStorage
template <typename T>
concept CAnyCustomStorage = CDefaultConstructible<T>
&& !CCopyConstructible<T> && !CMoveConstructible<T>
&& !CCopyAssignable<T> && !CMoveAssignable<T>
&& CDestructible<T>
&& CSameAs<decltype(T::InlineSize), const size_t>
&& CSameAs<decltype(T::InlineAlignment), const size_t>
&& requires(const T& A)
{
{ A.InlineAllocation() } -> CSameAs<const void*>;
{ A.HeapAllocation() } -> CSameAs<void*>;
{ A.TypeInfo() } -> CSameAs<uintptr>;
}
&& requires(T& A)
{
{ A.InlineAllocation() } -> CSameAs<void*>;
{ A.HeapAllocation() } -> CSameAs<void*&>;
{ A.TypeInfo() } -> CSameAs<uintptr&>;
}
&& requires(T& A, const T& B, T&& C)
{
A.CopyCustom(B);
A.MoveCustom(MoveTemp(C));
};
// NOTE: In the STL, the assignment operation of the std::any type uses the copy-and-swap idiom
// instead of directly calling the assignment operation of the contained value.
// The purpose of this is as follows:
// 1) the copy assignment might not exist.
// 2) the typical case is that the objects are different.
// 3) it is less exception-safe
// But we don't follow the the copy-and-swap idiom, because we assume that no function throws an exception.
// TAny's default storage structure
struct alignas(16) FAnyDefaultStorage : FSingleton
{
// The built-in copy/move operators are disabled and CopyCustom/MoveCustom is used instead of them
// You can add custom variables like this
//Type Variable;
//~ Begin CAnyCustomStorage Interface
inline static constexpr size_t InlineSize = 64 - sizeof(uintptr);
inline static constexpr size_t InlineAlignment = 16;
constexpr void* InlineAllocation() { return &InlineAllocationImpl; }
constexpr const void* InlineAllocation() const { return &InlineAllocationImpl; }
constexpr void*& HeapAllocation() { return HeapAllocationImpl; }
constexpr void* HeapAllocation() const { return HeapAllocationImpl; }
constexpr uintptr& TypeInfo() { return TypeInfoImpl; }
constexpr uintptr TypeInfo() const { return TypeInfoImpl; }
constexpr void CopyCustom(const FAnyDefaultStorage& InValue) { /* Variable = InValue.Variable; */ } // You just need to copy the custom variables
constexpr void MoveCustom( FAnyDefaultStorage&& InValue) { /* Variable = MoveTemp(InValue.Variable); */ } // You just need to move the custom variables
//~ End CAnyCustomStorage Interface
union
{
uint8 InlineAllocationImpl[InlineSize];
void* HeapAllocationImpl;
};
uintptr TypeInfoImpl;
};
static_assert(CAnyCustomStorage<FAnyDefaultStorage>);
// You can add custom storage area through CustomStorage, such as TFunction
// It is not recommended to use this, FAny is recommended
template <CAnyCustomStorage CustomStorage>
class TAny
class alignas(16) FAny
{
public:
inline static constexpr size_t InlineSize = CustomStorage::InlineSize;
inline static constexpr size_t InlineAlignment = CustomStorage::InlineAlignment;
FORCEINLINE constexpr FAny() { Invalidate(); }
constexpr TAny() { Storage.TypeInfo() = 0; }
FORCEINLINE constexpr FAny(FInvalid) : FAny() { }
constexpr TAny(FInvalid) : TAny() { }
FORCEINLINE TAny(const TAny& InValue)
FORCEINLINE FAny(const FAny& InValue)
: TypeInfo(InValue.TypeInfo)
{
Storage.CopyCustom(InValue.Storage);
Storage.TypeInfo() = InValue.Storage.TypeInfo();
if (!IsValid()) return;
switch (GetRepresentation())
{
case ERepresentation::Empty:
break;
case ERepresentation::Trivial:
Memory::Memcpy(Storage.InlineAllocation(), InValue.Storage.InlineAllocation(), Storage.InlineSize);
Memory::Memcpy(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
break;
case ERepresentation::Small:
GetTypeInfoImpl().CopyConstructImpl(GetAllocation(), InValue.GetAllocation());
SmallStorage.RTTI = InValue.SmallStorage.RTTI;
SmallStorage.RTTI->CopyConstruct(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break;
case ERepresentation::Big:
Storage.HeapAllocation() = Memory::Malloc(GetTypeInfoImpl().TypeSize, GetTypeInfoImpl().TypeAlignment);
GetTypeInfoImpl().CopyConstructImpl(GetAllocation(), InValue.GetAllocation());
BigStorage.RTTI = InValue.BigStorage.RTTI;
BigStorage.External = Memory::Malloc(BigStorage.RTTI->TypeSize, BigStorage.RTTI->TypeAlignment);
BigStorage.RTTI->CopyConstruct(BigStorage.External, InValue.BigStorage.External);
break;
default: check_no_entry();
}
}
FORCEINLINE TAny(TAny&& InValue)
FORCEINLINE FAny(FAny&& InValue)
: TypeInfo(InValue.TypeInfo)
{
Storage.MoveCustom(MoveTemp(InValue.Storage));
Storage.TypeInfo() = InValue.Storage.TypeInfo();
if (!IsValid()) return;
switch (GetRepresentation())
{
case ERepresentation::Empty:
break;
case ERepresentation::Trivial:
Memory::Memcpy(Storage.InlineAllocation(), InValue.Storage.InlineAllocation(), Storage.InlineSize);
Memory::Memmove(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
break;
case ERepresentation::Small:
GetTypeInfoImpl().MoveConstructImpl(GetAllocation(), InValue.GetAllocation());
SmallStorage.RTTI = InValue.SmallStorage.RTTI;
SmallStorage.RTTI->MoveConstruct(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break;
case ERepresentation::Big:
Storage.HeapAllocation() = InValue.Storage.HeapAllocation();
InValue.Storage.TypeInfo() = 0;
BigStorage.RTTI = InValue.BigStorage.RTTI;
BigStorage.External = InValue.BigStorage.External;
InValue.Invalidate();
break;
default: check_no_entry();
}
@ -136,28 +81,25 @@ public:
template <typename T, typename... Ts> requires (CDestructible<TDecay<T>>
&& CConstructibleFrom<TDecay<T>, Ts&&...>)
FORCEINLINE explicit TAny(TInPlaceType<T>, Ts&&... Args)
FORCEINLINE explicit FAny(TInPlaceType<T>, Ts&&... Args)
{
using SelectedType = TDecay<T>;
EmplaceImpl<SelectedType>(Forward<Ts>(Args)...);
EmplaceImpl<T>(Forward<Ts>(Args)...);
}
template <typename T> requires (!CBaseOf<TAny, TDecay<T>> && !CTInPlaceType<TDecay<T>>
template <typename T> requires (!CBaseOf<FAny, TDecay<T>> && !CTInPlaceType<TDecay<T>>
&& CDestructible<TDecay<T>> && CConstructibleFrom<TDecay<T>, T&&>)
FORCEINLINE TAny(T&& InValue) : TAny(InPlaceType<TDecay<T>>, Forward<T>(InValue))
FORCEINLINE FAny(T&& InValue) : FAny(InPlaceType<TDecay<T>>, Forward<T>(InValue))
{ }
FORCEINLINE ~TAny()
FORCEINLINE ~FAny()
{
ResetImpl();
Destroy();
}
FORCEINLINE TAny& operator=(const TAny& InValue)
FORCEINLINE FAny& operator=(const FAny& InValue)
{
if (&InValue == this) return *this;
Storage.CopyCustom(InValue.Storage);
if (!InValue.IsValid())
{
Reset();
@ -166,33 +108,43 @@ public:
{
switch (GetRepresentation())
{
case ERepresentation::Empty:
break;
case ERepresentation::Trivial:
Memory::Memcpy(Storage.InlineAllocation(), InValue.Storage.InlineAllocation(), Storage.InlineSize);
Memory::Memcpy(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
break;
case ERepresentation::Small:
SmallStorage.RTTI = InValue.SmallStorage.RTTI;
SmallStorage.RTTI->CopyAssign(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break;
case ERepresentation::Big:
GetTypeInfoImpl().CopyAssignImpl(GetAllocation(), InValue.GetAllocation());
BigStorage.RTTI = InValue.BigStorage.RTTI;
BigStorage.RTTI->CopyAssign(BigStorage.External, InValue.BigStorage.External);
break;
default: check_no_entry();
}
}
else
{
ResetImpl();
Destroy();
Storage.TypeInfo() = InValue.Storage.TypeInfo();
TypeInfo = InValue.TypeInfo;
switch (GetRepresentation())
{
case ERepresentation::Empty:
break;
case ERepresentation::Trivial:
Memory::Memcpy(Storage.InlineAllocation(), InValue.Storage.InlineAllocation(), Storage.InlineSize);
Memory::Memcpy(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
break;
case ERepresentation::Small:
GetTypeInfoImpl().CopyConstructImpl(GetAllocation(), InValue.GetAllocation());
SmallStorage.RTTI = InValue.SmallStorage.RTTI;
SmallStorage.RTTI->CopyConstruct(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break;
case ERepresentation::Big:
Storage.HeapAllocation() = Memory::Malloc(GetTypeInfoImpl().TypeSize, GetTypeInfoImpl().TypeAlignment);
GetTypeInfoImpl().CopyConstructImpl(GetAllocation(), InValue.GetAllocation());
BigStorage.RTTI = InValue.BigStorage.RTTI;
BigStorage.External = Memory::Malloc(BigStorage.RTTI->TypeSize, BigStorage.RTTI->TypeAlignment);
BigStorage.RTTI->CopyConstruct(BigStorage.External, InValue.BigStorage.External);
break;
default: check_no_entry();
}
@ -201,12 +153,10 @@ public:
return *this;
}
FORCEINLINE TAny& operator=(TAny&& InValue)
FORCEINLINE FAny& operator=(FAny&& InValue)
{
if (&InValue == this) return *this;
Storage.MoveCustom(MoveTemp(InValue.Storage));
if (!InValue.IsValid())
{
Reset();
@ -215,37 +165,45 @@ public:
{
switch (GetRepresentation())
{
case ERepresentation::Empty:
break;
case ERepresentation::Trivial:
Memory::Memcpy(Storage.InlineAllocation(), InValue.Storage.InlineAllocation(), Storage.InlineSize);
Memory::Memmove(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
break;
case ERepresentation::Small:
GetTypeInfoImpl().MoveAssignImpl(GetAllocation(), InValue.GetAllocation());
SmallStorage.RTTI = InValue.SmallStorage.RTTI;
SmallStorage.RTTI->MoveAssign(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break;
case ERepresentation::Big:
ResetImpl();
Storage.HeapAllocation() = InValue.Storage.HeapAllocation();
InValue.Storage.TypeInfo() = 0;
Destroy();
BigStorage.RTTI = InValue.BigStorage.RTTI;
BigStorage.External = InValue.BigStorage.External;
InValue.Invalidate();
break;
default: check_no_entry();
}
}
else
{
ResetImpl();
Destroy();
Storage.TypeInfo() = InValue.Storage.TypeInfo();
TypeInfo = InValue.TypeInfo;
switch (GetRepresentation())
{
case ERepresentation::Empty:
break;
case ERepresentation::Trivial:
Memory::Memcpy(Storage.InlineAllocation(), InValue.Storage.InlineAllocation(), Storage.InlineSize);
Memory::Memmove(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
break;
case ERepresentation::Small:
GetTypeInfoImpl().MoveConstructImpl(GetAllocation(), InValue.GetAllocation());
SmallStorage.RTTI = InValue.SmallStorage.RTTI;
SmallStorage.RTTI->MoveConstruct(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break;
case ERepresentation::Big:
Storage.HeapAllocation() = InValue.Storage.HeapAllocation();
InValue.Storage.TypeInfo() = 0;
BigStorage.RTTI = InValue.BigStorage.RTTI;
BigStorage.External = InValue.BigStorage.External;
InValue.Invalidate();
break;
default: check_no_entry();
}
@ -254,20 +212,20 @@ public:
return *this;
}
template <typename T> requires (!CBaseOf<TAny, TDecay<T>> && !CTInPlaceType<TDecay<T>>
&& CDestructible<TDecay<T>> && CConstructibleFrom<TDecay<T>, T&&>)
FORCEINLINE TAny& operator=(T&& InValue)
template <typename T> requires (!CBaseOf<FAny, TDecay<T>> && !CTInPlaceType<TDecay<T>>
&& CDestructible<TDecay<T>>&& CConstructibleFrom<TDecay<T>, T&&>)
FORCEINLINE FAny& operator=(T&& InValue)
{
using SelectedType = TDecay<T>;
using DecayedType = TDecay<T>;
if (HoldsAlternative<SelectedType>())
if (HoldsAlternative<DecayedType>())
{
GetValue<SelectedType>() = Forward<T>(InValue);
GetValue<DecayedType>() = Forward<T>(InValue);
}
else
{
ResetImpl();
EmplaceImpl<SelectedType>(Forward<T>(InValue));
Destroy();
EmplaceImpl<DecayedType>(Forward<T>(InValue));
}
return *this;
@ -277,55 +235,43 @@ public:
&& CConstructibleFrom<TDecay<T>, Ts&&...>)
FORCEINLINE TDecay<T>& Emplace(Ts&&... Args)
{
ResetImpl();
using SelectedType = TDecay<T>;
EmplaceImpl<SelectedType>(Forward<Ts>(Args)...);
return GetValue<SelectedType>();
Destroy();
EmplaceImpl<T>(Forward<Ts>(Args)...);
return GetValue<TDecay<T>>();
}
constexpr const type_info& GetTypeInfo() const { return IsValid() ? *GetTypeInfoImpl().NativeTypeInfo : typeid(void); }
FORCEINLINE constexpr const type_info& GetTypeInfo() const { return IsValid() ? GetTypeInfoImpl() : typeid(void); }
constexpr bool IsValid() const { return Storage.TypeInfo() != 0; }
constexpr explicit operator bool() const { return Storage.TypeInfo() != 0; }
FORCEINLINE constexpr bool IsValid() const { return TypeInfo != 0; }
FORCEINLINE constexpr explicit operator bool() const { return TypeInfo != 0; }
template <typename T> constexpr bool HoldsAlternative() const { return IsValid() ? GetTypeInfo() == typeid(T) : false; }
template <typename T> FORCEINLINE constexpr bool HoldsAlternative() const { return IsValid() ? GetTypeInfo() == typeid(T) : false; }
template <typename T> requires (CDestructible<TDecay<T>>)
constexpr T& GetValue() & { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return *reinterpret_cast< T*>(GetAllocation()); }
template <typename T> requires (CSameAs<T, TDecay<T>>&& CDestructible<TDecay<T>>)
FORCEINLINE constexpr T& GetValue() & { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return *reinterpret_cast< T*>(GetStorage()); }
template <typename T> requires (CDestructible<TDecay<T>>)
constexpr T&& GetValue() && { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return MoveTemp(*reinterpret_cast< T*>(GetAllocation())); }
template <typename T> requires (CSameAs<T, TDecay<T>>&& CDestructible<TDecay<T>>)
FORCEINLINE constexpr T&& GetValue() && { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return MoveTemp(*reinterpret_cast< T*>(GetStorage())); }
template <typename T> requires (CDestructible<TDecay<T>>)
constexpr const T& GetValue() const& { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return *reinterpret_cast<const T*>(GetAllocation()); }
template <typename T> requires (CSameAs<T, TDecay<T>>&& CDestructible<TDecay<T>>)
FORCEINLINE constexpr const T& GetValue() const& { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return *reinterpret_cast<const T*>(GetStorage()); }
template <typename T> requires (CDestructible<TDecay<T>>)
constexpr const T&& GetValue() const&& { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return MoveTemp(*reinterpret_cast<const T*>(GetAllocation())); }
template <typename T> requires (CSameAs<T, TDecay<T>>&& CDestructible<TDecay<T>>)
FORCEINLINE constexpr const T&& GetValue() const&& { checkf(HoldsAlternative<T>(), TEXT("It is an error to call GetValue() on an wrong TAny. Please either check HoldsAlternative() or use Get(DefaultValue) instead.")); return MoveTemp(*reinterpret_cast<const T*>(GetStorage())); }
template <typename T> requires (CSameAs<T, TDecay<T>> && CDestructible<TDecay<T>>)
constexpr T& Get( T& DefaultValue) & { return HoldsAlternative<T>() ? GetValue<T>() : DefaultValue; }
FORCEINLINE constexpr T& Get( T& DefaultValue) & { return HoldsAlternative<T>() ? GetValue<T>() : DefaultValue; }
template <typename T> requires (CSameAs<T, TDecay<T>> && CDestructible<TDecay<T>>)
constexpr const T& Get(const T& DefaultValue) const& { return HoldsAlternative<T>() ? GetValue<T>() : DefaultValue; }
constexpr CustomStorage& GetCustomStorage() requires (!CSameAs<CustomStorage, FAnyDefaultStorage>) { return Storage; }
constexpr const CustomStorage& GetCustomStorage() const requires (!CSameAs<CustomStorage, FAnyDefaultStorage>) { return Storage; }
FORCEINLINE constexpr const T& Get(const T& DefaultValue) const& { return HoldsAlternative<T>() ? GetValue<T>() : DefaultValue; }
FORCEINLINE void Reset()
{
ResetImpl();
Storage.TypeInfo() = 0;
Destroy();
Invalidate();
}
FORCEINLINE size_t GetTypeHash() const
{
using NAMESPACE_REDCRAFT::GetTypeHash;
if (!IsValid()) return 20090007;
return HashCombine(GetTypeHash(GetTypeInfo()), GetTypeInfoImpl().HashImpl(GetAllocation()));
}
FORCEINLINE void Swap(TAny& InValue)
FORCEINLINE void Swap(FAny& InValue)
{
if (!IsValid() && !InValue.IsValid()) return;
@ -345,170 +291,253 @@ public:
if (GetTypeInfo() == InValue.GetTypeInfo())
{
GetTypeInfoImpl().SwapImpl(GetAllocation(), InValue.GetAllocation());
switch (GetRepresentation())
{
case ERepresentation::Empty:
break;
case ERepresentation::Trivial:
uint8 Buffer[sizeof(TrivialStorage.Internal)];
Memory::Memmove(Buffer, TrivialStorage.Internal);
Memory::Memmove(TrivialStorage.Internal, InValue.TrivialStorage.Internal);
Memory::Memmove(InValue.TrivialStorage.Internal, Buffer);
break;
case ERepresentation::Small:
SmallStorage.RTTI->SwapObject(&SmallStorage.Internal, &InValue.SmallStorage.Internal);
break;
case ERepresentation::Big:
NAMESPACE_REDCRAFT::Swap(BigStorage.External, InValue.BigStorage.External);
break;
default: check_no_entry();
}
return;
}
TAny Temp = MoveTemp(*this);
FAny Temp = MoveTemp(*this);
*this = MoveTemp(InValue);
InValue = MoveTemp(Temp);
}
private:
CustomStorage Storage;
static constexpr uintptr_t RepresentationMask = 3;
enum class ERepresentation : uint8
struct FRTTI
{
Trivial, // Trivial & Inline
Small, // InlineAllocation
Big, // HeapAllocation
};
struct FTypeInfoImpl
{
const type_info* NativeTypeInfo;
const size_t TypeSize;
const size_t TypeAlignment;
using FCopyConstructImpl = void(*)(void*, const void*);
using FMoveConstructImpl = void(*)(void*, void*);
using FCopyAssignImpl = void(*)(void*, const void*);
using FMoveAssignImpl = void(*)(void*, void*);
using FDestroyImpl = void(*)(void* );
using FCopyConstruct = void(*)(void*, const void*);
using FMoveConstruct = void(*)(void*, void*);
using FCopyAssign = void(*)(void*, const void*);
using FMoveAssign = void(*)(void*, void*);
using FDestruct = void(*)(void* );
using FSwapObject = void(*)(void*, void*);
using FEqualityCompareImpl = bool (*)(const void*, const void*);
using FSynthThreeWayCompareImpl = partial_ordering (*)(const void*, const void*);
using FHashImpl = size_t (*)(const void* );
using FSwapImpl = void (*)( void*, void*);
const FCopyConstructImpl CopyConstructImpl;
const FMoveConstructImpl MoveConstructImpl;
const FCopyAssignImpl CopyAssignImpl;
const FMoveAssignImpl MoveAssignImpl;
const FDestroyImpl DestroyImpl;
const FEqualityCompareImpl EqualityCompareImpl;
const FSynthThreeWayCompareImpl SynthThreeWayCompareImpl;
const FHashImpl HashImpl;
const FSwapImpl SwapImpl;
const FCopyConstruct CopyConstruct;
const FMoveConstruct MoveConstruct;
const FCopyAssign CopyAssign;
const FMoveAssign MoveAssign;
const FDestruct Destruct;
const FSwapObject SwapObject;
template <typename T>
constexpr FTypeInfoImpl(TInPlaceType<T>)
: NativeTypeInfo (&typeid(T))
, TypeSize ( sizeof(T))
, TypeAlignment (alignof(T))
, CopyConstructImpl ([](void* A, const void* B) { if constexpr (requires(T* A, const T* B) { Memory::CopyConstruct (A, B); }) Memory::CopyConstruct (reinterpret_cast<T*>(A), reinterpret_cast<const T*>(B)); else checkf(false, TEXT("The type '%s' is not copy constructible."), typeid(T).name()); })
, MoveConstructImpl ([](void* A, void* B) { if constexpr (requires(T* A, T* B) { Memory::MoveConstruct (A, B); }) Memory::MoveConstruct (reinterpret_cast<T*>(A), reinterpret_cast< T*>(B)); else checkf(false, TEXT("The type '%s' is not move constructible."), typeid(T).name()); })
, CopyAssignImpl ([](void* A, const void* B) { if constexpr (requires(T* A, const T* B) { Memory::CopyAssign (A, B); }) Memory::CopyAssign (reinterpret_cast<T*>(A), reinterpret_cast<const T*>(B)); else checkf(false, TEXT("The type '%s' is not copy assignable."), typeid(T).name()); })
, MoveAssignImpl ([](void* A, void* B) { if constexpr (requires(T* A, T* B) { Memory::MoveAssign (A, B); }) Memory::MoveAssign (reinterpret_cast<T*>(A), reinterpret_cast< T*>(B)); else checkf(false, TEXT("The type '%s' is not move assignable."), typeid(T).name()); })
, DestroyImpl ([](void* A ) { if constexpr (requires(T* A ) { Memory::Destruct (A ); }) Memory::Destruct (reinterpret_cast<T*>(A) ); else checkf(false, TEXT("The type '%s' is not destructible."), typeid(T).name()); })
, EqualityCompareImpl ([](const void* A, const void* B) -> bool { if constexpr (CEqualityComparable<T> ) return (*reinterpret_cast<const T*>(A) == *reinterpret_cast<const T*>(B)); else checkf(false, TEXT("The type '%s' is not equality comparable."), typeid(T).name()); return false; })
, SynthThreeWayCompareImpl ([](const void* A, const void* B) -> partial_ordering { if constexpr (CSynthThreeWayComparable<T>) return NAMESPACE_REDCRAFT::SynthThreeWayCompare (*reinterpret_cast<const T*>(A), *reinterpret_cast<const T*>(B)); else checkf(false, TEXT("The type '%s' is not synth three-way comparable."), typeid(T).name()); return partial_ordering::unordered; })
, HashImpl ([](const void* A ) -> size_t { if constexpr (CHashable<T> ) return NAMESPACE_REDCRAFT::GetTypeHash (*reinterpret_cast<const T*>(A) ); else checkf(false, TEXT("The type '%s' is not hashable."), typeid(T).name()); return 1080551797; })
, SwapImpl ([]( void* A, void* B) -> void { if constexpr (CSwappable<T> ) NAMESPACE_REDCRAFT::Swap (*reinterpret_cast< T*>(A), *reinterpret_cast< T*>(B)); else checkf(false, TEXT("The type '%s' is not swappable."), typeid(T).name()); })
{ }
};
constexpr ERepresentation GetRepresentation() const { return static_cast<ERepresentation>(Storage.TypeInfo() & RepresentationMask); }
constexpr const FTypeInfoImpl& GetTypeInfoImpl() const { return *reinterpret_cast<const FTypeInfoImpl*>(Storage.TypeInfo() & ~RepresentationMask); }
constexpr void* GetAllocation() { return GetRepresentation() == ERepresentation::Trivial || GetRepresentation() == ERepresentation::Small ? Storage.InlineAllocation() : Storage.HeapAllocation(); }
constexpr const void* GetAllocation() const { return GetRepresentation() == ERepresentation::Trivial || GetRepresentation() == ERepresentation::Small ? Storage.InlineAllocation() : Storage.HeapAllocation(); }
template <typename SelectedType, typename... Ts>
FORCEINLINE void EmplaceImpl(Ts&&... Args)
FORCEINLINE constexpr FRTTI(TInPlaceType<T>)
: TypeSize( sizeof(T)), TypeAlignment(alignof(T))
, CopyConstruct(
[](void* A, const void* B)
{
static constexpr const FTypeInfoImpl SelectedTypeInfo(InPlaceType<SelectedType>);
Storage.TypeInfo() = reinterpret_cast<uintptr>(&SelectedTypeInfo);
constexpr bool bIsInlineStorable = sizeof(SelectedType) <= Storage.InlineSize && alignof(SelectedType) <= Storage.InlineAlignment;
constexpr bool bIsTriviallyStorable = bIsInlineStorable && CTrivial<SelectedType> && CTriviallyCopyable<SelectedType>;
if constexpr (bIsTriviallyStorable)
{
new(Storage.InlineAllocation()) SelectedType(Forward<Ts>(Args)...);
Storage.TypeInfo() |= static_cast<uintptr>(ERepresentation::Trivial);
new (A) T(*reinterpret_cast<const T*>(B));
}
else if constexpr (bIsInlineStorable)
)
, MoveConstruct(
[](void* A, void* B)
{
new(Storage.InlineAllocation()) SelectedType(Forward<Ts>(Args)...);
Storage.TypeInfo() |= static_cast<uintptr>(ERepresentation::Small);
new (A) T(MoveTemp(*reinterpret_cast<T*>(B)));
}
)
, CopyAssign(
[](void* A, const void* B)
{
if constexpr (CCopyAssignable<T>)
{
*reinterpret_cast<T*>(A) = *reinterpret_cast<const T*>(B);
}
else
{
Storage.HeapAllocation() = new SelectedType(Forward<Ts>(Args)...);
Storage.TypeInfo() |= static_cast<uintptr>(ERepresentation::Big);
reinterpret_cast<T*>(A)->~T();
new (A) T(*reinterpret_cast<const T*>(B));
}
}
)
, MoveAssign(
[](void* A, void* B)
{
if constexpr (CMoveAssignable<T>)
{
*reinterpret_cast<T*>(A) = MoveTemp(*reinterpret_cast<T*>(B));
}
else
{
reinterpret_cast<T*>(A)->~T();
new (A) T(MoveTemp(*reinterpret_cast<T*>(B)));
}
}
)
, Destruct(
[](void* A)
{
reinterpret_cast<T*>(A)->~T();
}
)
, SwapObject{
[](void* A, void* B)
{
NAMESPACE_REDCRAFT::Swap(*reinterpret_cast<T*>(A), *reinterpret_cast<T*>(B));
}
}
{ }
};
struct FTrivialStorage
{
uint8 Internal[64 - sizeof(uintptr)];
};
struct FSmallStorage
{
uint8 Internal[sizeof(FTrivialStorage) - sizeof(const FRTTI*)];
const FRTTI* RTTI;
};
struct FBigStorage
{
uint8 Padding[sizeof(FTrivialStorage) - sizeof(void*) - sizeof(const FRTTI*)];
void* External;
const FRTTI* RTTI;
};
static_assert(sizeof(FTrivialStorage) == sizeof(FSmallStorage));
static_assert(sizeof(FTrivialStorage) == sizeof( FBigStorage));
static_assert(alignof(type_info) >= 4);
static constexpr uintptr_t RepresentationMask = 3;
enum class ERepresentation : uintptr
{
Empty = 0, // EmptyType
Trivial = 1, // TrivialStorage
Small = 2, // SmallStorage
Big = 3, // BigStorage
};
union
{
FTrivialStorage TrivialStorage;
FSmallStorage SmallStorage;
FBigStorage BigStorage;
};
uintptr TypeInfo;
FORCEINLINE ERepresentation GetRepresentation() const { return static_cast<ERepresentation>(TypeInfo & RepresentationMask); }
FORCEINLINE const type_info& GetTypeInfoImpl() const { return *reinterpret_cast<const type_info*>(TypeInfo & ~RepresentationMask); }
FORCEINLINE void* GetStorage()
{
switch (GetRepresentation())
{
case ERepresentation::Empty: return nullptr;
case ERepresentation::Trivial: return &TrivialStorage.Internal;
case ERepresentation::Small: return &SmallStorage.Internal;
case ERepresentation::Big: return BigStorage.External;
default: check_no_entry(); return nullptr;
}
}
FORCEINLINE void ResetImpl()
FORCEINLINE const void* GetStorage() const
{
switch (GetRepresentation())
{
case ERepresentation::Empty: return nullptr;
case ERepresentation::Trivial: return &TrivialStorage.Internal;
case ERepresentation::Small: return &SmallStorage.Internal;
case ERepresentation::Big: return BigStorage.External;
default: check_no_entry(); return nullptr;
}
}
template <typename T, typename... Ts>
FORCEINLINE void EmplaceImpl(Ts&&... Args)
{
using DecayedType = TDecay<T>;
TypeInfo = reinterpret_cast<uintptr>(&typeid(DecayedType));
if constexpr (CEmpty<DecayedType> && CTrivial<DecayedType>) return; // ERepresentation::Empty
constexpr bool bIsTriviallyStorable = sizeof(DecayedType) <= sizeof(TrivialStorage.Internal) && alignof(DecayedType) <= alignof(FAny) && CTriviallyCopyable<DecayedType>;
constexpr bool bIsSmallStorable = sizeof(DecayedType) <= sizeof( SmallStorage.Internal) && alignof(DecayedType) <= alignof(FAny);
static constexpr const FRTTI SelectedRTTI(InPlaceType<DecayedType>);
if constexpr (bIsTriviallyStorable)
{
new (&TrivialStorage.Internal) DecayedType(Forward<Ts>(Args)...);
TypeInfo |= static_cast<uintptr>(ERepresentation::Trivial);
}
else if constexpr (bIsSmallStorable)
{
new (&SmallStorage.Internal) DecayedType(Forward<Ts>(Args)...);
SmallStorage.RTTI = &SelectedRTTI;
TypeInfo |= static_cast<uintptr>(ERepresentation::Small);
}
else
{
BigStorage.External = Memory::Malloc(sizeof(DecayedType), alignof(DecayedType));
new (BigStorage.External) DecayedType(Forward<Ts>(Args)...);
BigStorage.RTTI = &SelectedRTTI;
TypeInfo |= static_cast<uintptr>(ERepresentation::Big);
}
}
FORCEINLINE void Destroy()
{
if (!IsValid()) return;
switch (GetRepresentation())
{
case ERepresentation::Empty:
case ERepresentation::Trivial:
break;
case ERepresentation::Small:
GetTypeInfoImpl().DestroyImpl(GetAllocation());
SmallStorage.RTTI->Destruct(&SmallStorage.Internal);
break;
case ERepresentation::Big:
GetTypeInfoImpl().DestroyImpl(GetAllocation());
Memory::Free(Storage.HeapAllocation());
BigStorage.RTTI->Destruct(BigStorage.External);
Memory::Free(BigStorage.External);
break;
default: check_no_entry();
}
}
friend FORCEINLINE bool operator==(const TAny& LHS, const TAny& RHS)
FORCEINLINE constexpr void Invalidate() { TypeInfo = 0; }
template <typename T> requires (!CBaseOf<FAny, TRemoveCVRef<T>>)
friend FORCEINLINE constexpr bool operator==(const FAny& LHS, const T& RHS)
{
if (LHS.GetTypeInfo() != RHS.GetTypeInfo()) return false;
if (LHS.IsValid() == false) return true;
return LHS.GetTypeInfoImpl().EqualityCompareImpl(LHS.GetAllocation(), RHS.GetAllocation());
return LHS.template HoldsAlternative<T>() ? LHS.template GetValue<T>() == RHS : false;
}
friend FORCEINLINE partial_ordering operator<=>(const TAny& LHS, const TAny& RHS)
friend FORCEINLINE constexpr bool operator==(const FAny& LHS, FInvalid)
{
if (LHS.GetTypeInfo() != RHS.GetTypeInfo()) return partial_ordering::unordered;
if (LHS.IsValid() == false) return partial_ordering::equivalent;
return LHS.GetTypeInfoImpl().SynthThreeWayCompareImpl(LHS.GetAllocation(), RHS.GetAllocation());;
return !LHS.IsValid();
}
};
class FAny : STRONG_INHERIT(TAny<FAnyDefaultStorage>);
static_assert(sizeof(FAny) == 64, "The byte size of FAny is unexpected");
template <typename T, CAnyCustomStorage StorageType> requires (!CBaseOf<FAny, TRemoveCVRef<T>>)
constexpr bool operator==(const TAny<StorageType>& LHS, const T& RHS)
{
return LHS.template HoldsAlternative<T>() ? LHS.template GetValue<T>() == RHS : false;
}
template <CAnyCustomStorage StorageType>
constexpr bool operator==(const TAny<StorageType>& LHS, FInvalid)
{
return !LHS.IsValid();
}
NAMESPACE_PRIVATE_BEGIN
template <typename T> struct TIsTAny : FFalse { };
template <CAnyCustomStorage StorageType> struct TIsTAny<TAny<StorageType>> : FTrue { };
NAMESPACE_PRIVATE_END
template <typename T>
concept CTAny = NAMESPACE_PRIVATE::TIsTAny<TRemoveCV<T>>::Value;
static_assert(alignof(FAny) == 16, "The byte alignment of FAny is unexpected");
NAMESPACE_MODULE_END(Utility)
NAMESPACE_MODULE_END(Redcraft)

View File

@ -321,15 +321,6 @@ public:
private:
union
{
uint8 InternalStorage[64 - sizeof(uintptr) - sizeof(uintptr)];
void* ExternalStorage;
};
uintptr RTTI;
uintptr Callable;
struct FMovableRTTI
{
const size_t TypeSize;
@ -391,6 +382,15 @@ private:
Big = 3, // ExternalStorage
};
union
{
uint8 InternalStorage[64 - sizeof(uintptr) - sizeof(uintptr)];
void* ExternalStorage;
};
uintptr RTTI;
uintptr Callable;
FORCEINLINE constexpr ERepresentation GetRepresentation() const { return static_cast<ERepresentation>(RTTI & RepresentationMask); }
FORCEINLINE constexpr const FRTTI& GetRTTI() const { return *reinterpret_cast<const FRTTI*>(RTTI & ~RepresentationMask); }