93 lines
2.5 KiB
Python
93 lines
2.5 KiB
Python
|
import torch.nn
|
||
|
import ldm.modules.diffusionmodules.openaimodel
|
||
|
|
||
|
from modules import script_callbacks, shared, devices
|
||
|
|
||
|
unet_options = []
|
||
|
current_unet_option = None
|
||
|
current_unet = None
|
||
|
|
||
|
|
||
|
def list_unets():
|
||
|
new_unets = script_callbacks.list_unets_callback()
|
||
|
|
||
|
unet_options.clear()
|
||
|
unet_options.extend(new_unets)
|
||
|
|
||
|
|
||
|
def get_unet_option(option=None):
|
||
|
option = option or shared.opts.sd_unet
|
||
|
|
||
|
if option == "None":
|
||
|
return None
|
||
|
|
||
|
if option == "Automatic":
|
||
|
name = shared.sd_model.sd_checkpoint_info.model_name
|
||
|
|
||
|
options = [x for x in unet_options if x.model_name == name]
|
||
|
|
||
|
option = options[0].label if options else "None"
|
||
|
|
||
|
return next(iter([x for x in unet_options if x.label == option]), None)
|
||
|
|
||
|
|
||
|
def apply_unet(option=None):
|
||
|
global current_unet_option
|
||
|
global current_unet
|
||
|
|
||
|
new_option = get_unet_option(option)
|
||
|
if new_option == current_unet_option:
|
||
|
return
|
||
|
|
||
|
if current_unet is not None:
|
||
|
print(f"Dectivating unet: {current_unet.option.label}")
|
||
|
current_unet.deactivate()
|
||
|
|
||
|
current_unet_option = new_option
|
||
|
if current_unet_option is None:
|
||
|
current_unet = None
|
||
|
|
||
|
if not (shared.cmd_opts.lowvram or shared.cmd_opts.medvram):
|
||
|
shared.sd_model.model.diffusion_model.to(devices.device)
|
||
|
|
||
|
return
|
||
|
|
||
|
shared.sd_model.model.diffusion_model.to(devices.cpu)
|
||
|
devices.torch_gc()
|
||
|
|
||
|
current_unet = current_unet_option.create_unet()
|
||
|
current_unet.option = current_unet_option
|
||
|
print(f"Activating unet: {current_unet.option.label}")
|
||
|
current_unet.activate()
|
||
|
|
||
|
|
||
|
class SdUnetOption:
|
||
|
model_name = None
|
||
|
"""name of related checkpoint - this option will be selected automatically for unet if the name of checkpoint matches this"""
|
||
|
|
||
|
label = None
|
||
|
"""name of the unet in UI"""
|
||
|
|
||
|
def create_unet(self):
|
||
|
"""returns SdUnet object to be used as a Unet instead of built-in unet when making pictures"""
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
|
||
|
class SdUnet(torch.nn.Module):
|
||
|
def forward(self, x, timesteps, context, *args, **kwargs):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def activate(self):
|
||
|
pass
|
||
|
|
||
|
def deactivate(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
def UNetModel_forward(self, x, timesteps=None, context=None, *args, **kwargs):
|
||
|
if current_unet is not None:
|
||
|
return current_unet.forward(x, timesteps, context, *args, **kwargs)
|
||
|
|
||
|
return ldm.modules.diffusionmodules.openaimodel.copy_of_UNetModel_forward_for_webui(self, x, timesteps, context, *args, **kwargs)
|
||
|
|