fix CLIP doing the unneeded normalization

revert SD2.1 back to use the original repo
add SDXL's force_zero_embeddings to negative prompt
This commit is contained in:
AUTOMATIC1111 2023-07-13 11:35:52 +03:00
parent 21aec6f567
commit 594c8e7b26
6 changed files with 29 additions and 8 deletions

View File

@ -344,7 +344,7 @@ class StableDiffusionProcessing:
def setup_conds(self):
prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height)
negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height)
negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True)
sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1

View File

@ -116,11 +116,17 @@ class SdConditioning(list):
A list with prompts for stable diffusion's conditioner model.
Can also specify width and height of created image - SDXL needs it.
"""
def __init__(self, prompts, width=None, height=None):
def __init__(self, prompts, is_negative_prompt=False, width=None, height=None, copy_from=None):
super().__init__()
self.extend(prompts)
self.width = width or getattr(prompts, 'width', None)
self.height = height or getattr(prompts, 'height', None)
if copy_from is None:
copy_from = prompts
self.is_negative_prompt = is_negative_prompt or getattr(copy_from, 'is_negative_prompt', False)
self.width = width or getattr(copy_from, 'width', None)
self.height = height or getattr(copy_from, 'height', None)
def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps):
@ -153,7 +159,7 @@ def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps):
res.append(cached)
continue
texts = [x[1] for x in prompt_schedule]
texts = SdConditioning([x[1] for x in prompt_schedule], copy_from=prompts)
conds = model.get_learned_conditioning(texts)
cond_schedule = []

View File

@ -190,7 +190,7 @@ class StableDiffusionModelHijack:
if typename == 'FrozenCLIPEmbedder':
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(embedder, self)
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderForSDXLWithCustomWords(embedder, self)
conditioner.embedders[i] = m.cond_stage_model
if typename == 'FrozenOpenCLIPEmbedder2':
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self)

View File

@ -323,3 +323,18 @@ class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0)
return embedded
class FrozenCLIPEmbedderForSDXLWithCustomWords(FrozenCLIPEmbedderWithCustomWords):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
def encode_with_transformers(self, tokens):
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=self.wrapped.layer == "hidden")
if self.wrapped.layer == "last":
z = outputs.last_hidden_state
else:
z = outputs.hidden_states[self.wrapped.layer_idx]
return z

View File

@ -12,7 +12,6 @@ sd_xl_repo_configs_path = os.path.join(paths.paths['Stable Diffusion XL'], "conf
config_default = shared.sd_default_config
config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
config_sd2v = os.path.join(sd_xl_repo_configs_path, "sd_2_1_768.yaml")
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
config_sdxl = os.path.join(sd_xl_repo_configs_path, "sd_xl_base.yaml")
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")

View File

@ -22,7 +22,8 @@ def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch:
"target_size_as_tuple": torch.tensor([height, width]).repeat(len(batch), 1).to(devices.device, devices.dtype),
}
c = self.conditioner(sdxl_conds)
force_zero_negative_prompt = getattr(batch, 'is_negative_prompt', False) and all(x == '' for x in batch)
c = self.conditioner(sdxl_conds, force_zero_embeddings=['txt'] if force_zero_negative_prompt else [])
return c