Vendor in the single module used from taming_transformers; remove taming_transformers dependency
(and fix the two ruff complaints)
This commit is contained in:
parent
b957dcfece
commit
5fcdaa6a7f
@ -10,7 +10,7 @@ from contextlib import contextmanager
|
|||||||
from torch.optim.lr_scheduler import LambdaLR
|
from torch.optim.lr_scheduler import LambdaLR
|
||||||
|
|
||||||
from ldm.modules.ema import LitEma
|
from ldm.modules.ema import LitEma
|
||||||
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
from vqvae_quantize import VectorQuantizer2 as VectorQuantizer
|
||||||
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
||||||
from ldm.util import instantiate_from_config
|
from ldm.util import instantiate_from_config
|
||||||
|
|
||||||
|
147
extensions-builtin/LDSR/vqvae_quantize.py
Normal file
147
extensions-builtin/LDSR/vqvae_quantize.py
Normal file
@ -0,0 +1,147 @@
|
|||||||
|
# Vendored from https://raw.githubusercontent.com/CompVis/taming-transformers/24268930bf1dce879235a7fddd0b2355b84d7ea6/taming/modules/vqvae/quantize.py,
|
||||||
|
# where the license is as follows:
|
||||||
|
#
|
||||||
|
# Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer
|
||||||
|
#
|
||||||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
# of this software and associated documentation files (the "Software"), to deal
|
||||||
|
# in the Software without restriction, including without limitation the rights
|
||||||
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
# copies of the Software, and to permit persons to whom the Software is
|
||||||
|
# furnished to do so, subject to the following conditions:
|
||||||
|
#
|
||||||
|
# The above copyright notice and this permission notice shall be included in all
|
||||||
|
# copies or substantial portions of the Software.
|
||||||
|
#
|
||||||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||||
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||||
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||||
|
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||||
|
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
||||||
|
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
|
||||||
|
# OR OTHER DEALINGS IN THE SOFTWARE./
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
from einops import rearrange
|
||||||
|
|
||||||
|
|
||||||
|
class VectorQuantizer2(nn.Module):
|
||||||
|
"""
|
||||||
|
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
|
||||||
|
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
||||||
|
# backwards compatibility we use the buggy version by default, but you can
|
||||||
|
# specify legacy=False to fix it.
|
||||||
|
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random",
|
||||||
|
sane_index_shape=False, legacy=True):
|
||||||
|
super().__init__()
|
||||||
|
self.n_e = n_e
|
||||||
|
self.e_dim = e_dim
|
||||||
|
self.beta = beta
|
||||||
|
self.legacy = legacy
|
||||||
|
|
||||||
|
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
||||||
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
||||||
|
|
||||||
|
self.remap = remap
|
||||||
|
if self.remap is not None:
|
||||||
|
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
||||||
|
self.re_embed = self.used.shape[0]
|
||||||
|
self.unknown_index = unknown_index # "random" or "extra" or integer
|
||||||
|
if self.unknown_index == "extra":
|
||||||
|
self.unknown_index = self.re_embed
|
||||||
|
self.re_embed = self.re_embed + 1
|
||||||
|
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
||||||
|
f"Using {self.unknown_index} for unknown indices.")
|
||||||
|
else:
|
||||||
|
self.re_embed = n_e
|
||||||
|
|
||||||
|
self.sane_index_shape = sane_index_shape
|
||||||
|
|
||||||
|
def remap_to_used(self, inds):
|
||||||
|
ishape = inds.shape
|
||||||
|
assert len(ishape) > 1
|
||||||
|
inds = inds.reshape(ishape[0], -1)
|
||||||
|
used = self.used.to(inds)
|
||||||
|
match = (inds[:, :, None] == used[None, None, ...]).long()
|
||||||
|
new = match.argmax(-1)
|
||||||
|
unknown = match.sum(2) < 1
|
||||||
|
if self.unknown_index == "random":
|
||||||
|
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
|
||||||
|
else:
|
||||||
|
new[unknown] = self.unknown_index
|
||||||
|
return new.reshape(ishape)
|
||||||
|
|
||||||
|
def unmap_to_all(self, inds):
|
||||||
|
ishape = inds.shape
|
||||||
|
assert len(ishape) > 1
|
||||||
|
inds = inds.reshape(ishape[0], -1)
|
||||||
|
used = self.used.to(inds)
|
||||||
|
if self.re_embed > self.used.shape[0]: # extra token
|
||||||
|
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
||||||
|
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
||||||
|
return back.reshape(ishape)
|
||||||
|
|
||||||
|
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
|
||||||
|
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
|
||||||
|
assert rescale_logits is False, "Only for interface compatible with Gumbel"
|
||||||
|
assert return_logits is False, "Only for interface compatible with Gumbel"
|
||||||
|
# reshape z -> (batch, height, width, channel) and flatten
|
||||||
|
z = rearrange(z, 'b c h w -> b h w c').contiguous()
|
||||||
|
z_flattened = z.view(-1, self.e_dim)
|
||||||
|
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
||||||
|
|
||||||
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
||||||
|
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \
|
||||||
|
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
|
||||||
|
|
||||||
|
min_encoding_indices = torch.argmin(d, dim=1)
|
||||||
|
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
||||||
|
perplexity = None
|
||||||
|
min_encodings = None
|
||||||
|
|
||||||
|
# compute loss for embedding
|
||||||
|
if not self.legacy:
|
||||||
|
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + \
|
||||||
|
torch.mean((z_q - z.detach()) ** 2)
|
||||||
|
else:
|
||||||
|
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * \
|
||||||
|
torch.mean((z_q - z.detach()) ** 2)
|
||||||
|
|
||||||
|
# preserve gradients
|
||||||
|
z_q = z + (z_q - z).detach()
|
||||||
|
|
||||||
|
# reshape back to match original input shape
|
||||||
|
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
|
||||||
|
|
||||||
|
if self.remap is not None:
|
||||||
|
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
|
||||||
|
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
||||||
|
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
|
||||||
|
|
||||||
|
if self.sane_index_shape:
|
||||||
|
min_encoding_indices = min_encoding_indices.reshape(
|
||||||
|
z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
||||||
|
|
||||||
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
||||||
|
|
||||||
|
def get_codebook_entry(self, indices, shape):
|
||||||
|
# shape specifying (batch, height, width, channel)
|
||||||
|
if self.remap is not None:
|
||||||
|
indices = indices.reshape(shape[0], -1) # add batch axis
|
||||||
|
indices = self.unmap_to_all(indices)
|
||||||
|
indices = indices.reshape(-1) # flatten again
|
||||||
|
|
||||||
|
# get quantized latent vectors
|
||||||
|
z_q = self.embedding(indices)
|
||||||
|
|
||||||
|
if shape is not None:
|
||||||
|
z_q = z_q.view(shape)
|
||||||
|
# reshape back to match original input shape
|
||||||
|
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||||||
|
|
||||||
|
return z_q
|
@ -229,13 +229,11 @@ def prepare_environment():
|
|||||||
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "https://github.com/mlfoundations/open_clip/archive/bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b.zip")
|
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "https://github.com/mlfoundations/open_clip/archive/bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b.zip")
|
||||||
|
|
||||||
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
|
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
|
||||||
taming_transformers_repo = os.environ.get('TAMING_TRANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
|
|
||||||
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
|
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
|
||||||
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
|
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
|
||||||
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
|
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
|
||||||
|
|
||||||
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf")
|
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf")
|
||||||
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
|
|
||||||
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "c9fe758757e022f05ca5a53fa8fac28889e4f1cf")
|
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "c9fe758757e022f05ca5a53fa8fac28889e4f1cf")
|
||||||
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
||||||
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
||||||
@ -286,7 +284,6 @@ def prepare_environment():
|
|||||||
os.makedirs(os.path.join(script_path, dir_repos), exist_ok=True)
|
os.makedirs(os.path.join(script_path, dir_repos), exist_ok=True)
|
||||||
|
|
||||||
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
|
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
|
||||||
git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
|
|
||||||
git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
|
git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
|
||||||
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
||||||
git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)
|
git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)
|
||||||
|
@ -20,7 +20,6 @@ assert sd_path is not None, f"Couldn't find Stable Diffusion in any of: {possibl
|
|||||||
|
|
||||||
path_dirs = [
|
path_dirs = [
|
||||||
(sd_path, 'ldm', 'Stable Diffusion', []),
|
(sd_path, 'ldm', 'Stable Diffusion', []),
|
||||||
(os.path.join(sd_path, '../taming-transformers'), 'taming', 'Taming Transformers', []),
|
|
||||||
(os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []),
|
(os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []),
|
||||||
(os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []),
|
(os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []),
|
||||||
(os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]),
|
(os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]),
|
||||||
|
@ -36,7 +36,6 @@
|
|||||||
|
|
||||||
# Fixed git commits
|
# Fixed git commits
|
||||||
#export STABLE_DIFFUSION_COMMIT_HASH=""
|
#export STABLE_DIFFUSION_COMMIT_HASH=""
|
||||||
#export TAMING_TRANSFORMERS_COMMIT_HASH=""
|
|
||||||
#export CODEFORMER_COMMIT_HASH=""
|
#export CODEFORMER_COMMIT_HASH=""
|
||||||
#export BLIP_COMMIT_HASH=""
|
#export BLIP_COMMIT_HASH=""
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user