change hash to sha256

This commit is contained in:
AUTOMATIC 2023-01-14 09:56:59 +03:00
parent 82725f0ac4
commit a95f135308
9 changed files with 159 additions and 51 deletions

1
.gitignore vendored
View File

@ -32,3 +32,4 @@ notification.mp3
/extensions
/test/stdout.txt
/test/stderr.txt
/cache.json

View File

@ -371,7 +371,7 @@ class Api:
return upscalers
def get_sd_models(self):
return [{"title":x.title, "model_name":x.model_name, "hash":x.hash, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()]
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()]
def get_hypernetworks(self):
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]

View File

@ -224,7 +224,8 @@ class UpscalerItem(BaseModel):
class SDModelItem(BaseModel):
title: str = Field(title="Title")
model_name: str = Field(title="Model Name")
hash: str = Field(title="Hash")
hash: Optional[str] = Field(title="Short hash")
sha256: Optional[str] = Field(title="sha256 hash")
filename: str = Field(title="Filename")
config: str = Field(title="Config file")

72
modules/hashes.py Normal file
View File

@ -0,0 +1,72 @@
import hashlib
import json
import os.path
import filelock
cache_filename = "cache.json"
cache_data = None
def dump_cache():
with filelock.FileLock(cache_filename+".lock"):
with open(cache_filename, "w", encoding="utf8") as file:
json.dump(cache_data, file, indent=4)
def cache(subsection):
global cache_data
if cache_data is None:
with filelock.FileLock(cache_filename+".lock"):
if not os.path.isfile(cache_filename):
cache_data = {}
else:
with open(cache_filename, "r", encoding="utf8") as file:
cache_data = json.load(file)
s = cache_data.get(subsection, {})
cache_data[subsection] = s
return s
def calculate_sha256(filename):
hash_sha256 = hashlib.sha256()
with open(filename, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
def sha256(filename, title):
hashes = cache("hashes")
ondisk_mtime = os.path.getmtime(filename)
if title in hashes:
cached_sha256 = hashes[title].get("sha256", None)
cached_mtime = hashes[title].get("mtime", 0)
if ondisk_mtime <= cached_mtime and cached_sha256 is not None:
return cached_sha256
print(f"Calculating sha256 for {filename}: ", end='')
sha256_value = calculate_sha256(filename)
print(f"{sha256_value}")
hashes[title] = {
"mtime": ondisk_mtime,
"sha256": sha256_value,
}
dump_cache()
return sha256_value

View File

@ -509,7 +509,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
if shared.opts.save_training_settings_to_txt:
saved_params = dict(
model_name=checkpoint.model_name, model_hash=checkpoint.hash, num_of_dataset_images=len(ds),
model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds),
**{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]}
)
logging.save_settings_to_file(log_directory, {**saved_params, **locals()})
@ -737,7 +737,7 @@ def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
try:
hypernetwork.sd_checkpoint = checkpoint.hash
hypernetwork.sd_checkpoint = checkpoint.shorthash
hypernetwork.sd_checkpoint_name = checkpoint.model_name
hypernetwork.name = hypernetwork_name
hypernetwork.save(filename)

View File

@ -14,17 +14,56 @@ import ldm.modules.midas as midas
from ldm.util import instantiate_from_config
from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors
from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes
from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir))
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name'])
checkpoints_list = {}
checkpoint_alisases = {}
checkpoints_loaded = collections.OrderedDict()
class CheckpointInfo:
def __init__(self, filename):
self.filename = filename
abspath = os.path.abspath(filename)
if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
elif abspath.startswith(model_path):
name = abspath.replace(model_path, '')
else:
name = os.path.basename(filename)
if name.startswith("\\") or name.startswith("/"):
name = name[1:]
self.title = name
self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
self.hash = model_hash(filename)
self.ids = [self.hash, self.model_name, self.title, f'{name} [{self.hash}]']
self.shorthash = None
self.sha256 = None
def register(self):
checkpoints_list[self.title] = self
for id in self.ids:
checkpoint_alisases[id] = self
def calculate_shorthash(self):
self.sha256 = hashes.sha256(self.filename, self.title)
self.shorthash = self.sha256[0:10]
if self.shorthash not in self.ids:
self.ids += [self.shorthash, self.sha256]
self.register()
return self.shorthash
try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
@ -44,8 +83,12 @@ def setup_model():
def checkpoint_tiles():
convert = lambda name: int(name) if name.isdigit() else name.lower()
alphanumeric_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
def convert(name):
return int(name) if name.isdigit() else name.lower()
def alphanumeric_key(key):
return [convert(c) for c in re.split('([0-9]+)', key)]
return sorted([x.title for x in checkpoints_list.values()], key=alphanumeric_key)
@ -62,48 +105,38 @@ def find_checkpoint_config(info):
def list_models():
checkpoints_list.clear()
checkpoint_alisases.clear()
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], ext_blacklist=[".vae.safetensors"])
def modeltitle(path, shorthash):
abspath = os.path.abspath(path)
if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
elif abspath.startswith(model_path):
name = abspath.replace(model_path, '')
else:
name = os.path.basename(path)
if name.startswith("\\") or name.startswith("/"):
name = name[1:]
shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
return f'{name} [{shorthash}]', shortname
cmd_ckpt = shared.cmd_opts.ckpt
if os.path.exists(cmd_ckpt):
h = model_hash(cmd_ckpt)
title, short_model_name = modeltitle(cmd_ckpt, h)
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name)
shared.opts.data['sd_model_checkpoint'] = title
checkpoint_info = CheckpointInfo(cmd_ckpt)
checkpoint_info.register()
shared.opts.data['sd_model_checkpoint'] = checkpoint_info.title
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
for filename in model_list:
h = model_hash(filename)
title, short_model_name = modeltitle(filename, h)
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name)
checkpoint_info = CheckpointInfo(filename)
checkpoint_info.register()
def get_closet_checkpoint_match(searchString):
applicable = sorted([info for info in checkpoints_list.values() if searchString in info.title], key = lambda x:len(x.title))
if len(applicable) > 0:
return applicable[0]
def get_closet_checkpoint_match(search_string):
checkpoint_info = checkpoint_alisases.get(search_string, None)
if checkpoint_info is not None:
return
found = sorted([info for info in checkpoints_list.values() if search_string in info.title], key=lambda x: len(x.title))
if found:
return found[0]
return None
def model_hash(filename):
"""old hash that only looks at a small part of the file and is prone to collisions"""
try:
with open(filename, "rb") as file:
import hashlib
@ -119,7 +152,7 @@ def model_hash(filename):
def select_checkpoint():
model_checkpoint = shared.opts.sd_model_checkpoint
checkpoint_info = checkpoints_list.get(model_checkpoint, None)
checkpoint_info = checkpoint_alisases.get(model_checkpoint, None)
if checkpoint_info is not None:
return checkpoint_info
@ -189,9 +222,8 @@ def read_state_dict(checkpoint_file, print_global_state=False, map_location=None
return sd
def load_model_weights(model, checkpoint_info, vae_file="auto"):
checkpoint_file = checkpoint_info.filename
sd_model_hash = checkpoint_info.hash
def load_model_weights(model, checkpoint_info: CheckpointInfo, vae_file="auto"):
sd_model_hash = checkpoint_info.calculate_shorthash()
cache_enabled = shared.opts.sd_checkpoint_cache > 0
@ -201,9 +233,9 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
model.load_state_dict(checkpoints_loaded[checkpoint_info])
else:
# load from file
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}")
sd = read_state_dict(checkpoint_file)
sd = read_state_dict(checkpoint_info.filename)
model.load_state_dict(sd, strict=False)
del sd
@ -235,14 +267,14 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
checkpoints_loaded.popitem(last=False) # LRU
model.sd_model_hash = sd_model_hash
model.sd_model_checkpoint = checkpoint_file
model.sd_model_checkpoint = checkpoint_info.filename
model.sd_checkpoint_info = checkpoint_info
model.logvar = model.logvar.to(devices.device) # fix for training
sd_vae.delete_base_vae()
sd_vae.clear_loaded_vae()
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
vae_file = sd_vae.resolve_vae(checkpoint_info.filename, vae_file=vae_file)
sd_vae.load_vae(model, vae_file)

View File

@ -428,7 +428,7 @@ options_templates.update(options_section(('ui', "User interface"), {
"return_grid": OptionInfo(True, "Show grid in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
"add_model_name_to_info": OptionInfo(False, "Add model name to generation information"),
"add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
"disable_weights_auto_swap": OptionInfo(False, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."),
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),

View File

@ -407,7 +407,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize)
if shared.opts.save_training_settings_to_txt:
save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.hash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
latent_sampling_method = ds.latent_sampling_method
@ -584,7 +584,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
checkpoint = sd_models.select_checkpoint()
footer_left = checkpoint.model_name
footer_mid = '[{}]'.format(checkpoint.hash)
footer_mid = '[{}]'.format(checkpoint.shorthash)
footer_right = '{}v {}s'.format(vectorSize, steps_done)
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
@ -626,7 +626,7 @@ def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, r
old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None
try:
embedding.sd_checkpoint = checkpoint.hash
embedding.sd_checkpoint = checkpoint.shorthash
embedding.sd_checkpoint_name = checkpoint.model_name
if remove_cached_checksum:
embedding.cached_checksum = None

View File

@ -78,6 +78,8 @@ def initialize():
print("Stable diffusion model failed to load, exiting", file=sys.stderr)
exit(1)
shared.opts.data["sd_model_checkpoint"] = shared.sd_model.sd_checkpoint_info.title
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)