add cheap VAE approximation coeffs for SDXL
This commit is contained in:
parent
471a5a66b7
commit
ac2d47ff4c
@ -64,12 +64,22 @@ def model():
|
||||
def cheap_approximation(sample):
|
||||
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2
|
||||
|
||||
coefs = torch.tensor([
|
||||
if shared.sd_model.is_sdxl:
|
||||
coeffs = [
|
||||
[ 0.3448, 0.4168, 0.4395],
|
||||
[-0.1953, -0.0290, 0.0250],
|
||||
[ 0.1074, 0.0886, -0.0163],
|
||||
[-0.3730, -0.2499, -0.2088],
|
||||
]
|
||||
else:
|
||||
coeffs = [
|
||||
[ 0.298, 0.207, 0.208],
|
||||
[ 0.187, 0.286, 0.173],
|
||||
[-0.158, 0.189, 0.264],
|
||||
[-0.184, -0.271, -0.473],
|
||||
]).to(sample.device)
|
||||
]
|
||||
|
||||
coefs = torch.tensor(coeffs).to(sample.device)
|
||||
|
||||
x_sample = torch.einsum("lxy,lr -> rxy", sample, coefs)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user