SDXL support

This commit is contained in:
AUTOMATIC1111 2023-07-12 23:52:43 +03:00
parent af081211ee
commit da464a3fb3
16 changed files with 241 additions and 44 deletions

View File

@ -224,6 +224,20 @@ def run_extensions_installers(settings_file):
run_extension_installer(os.path.join(extensions_dir, dirname_extension))
def mute_sdxl_imports():
"""create fake modules that SDXL wants to import but doesn't actually use for our purposes"""
import importlib
module = importlib.util.module_from_spec(importlib.machinery.ModuleSpec('taming.modules.losses.lpips', None))
module.LPIPS = None
sys.modules['taming.modules.losses.lpips'] = module
module = importlib.util.module_from_spec(importlib.machinery.ModuleSpec('sgm.data', None))
module.StableDataModuleFromConfig = None
sys.modules['sgm.data'] = module
def prepare_environment():
torch_index_url = os.environ.get('TORCH_INDEX_URL', "https://download.pytorch.org/whl/cu118")
torch_command = os.environ.get('TORCH_COMMAND', f"pip install torch==2.0.1 torchvision==0.15.2 --extra-index-url {torch_index_url}")
@ -319,11 +333,14 @@ def prepare_environment():
if args.update_all_extensions:
git_pull_recursive(extensions_dir)
mute_sdxl_imports()
if "--exit" in sys.argv:
print("Exiting because of --exit argument")
exit(0)
def configure_for_tests():
if "--api" not in sys.argv:
sys.argv.append("--api")

View File

@ -53,19 +53,46 @@ def setup_for_low_vram(sd_model, use_medvram):
send_me_to_gpu(first_stage_model, None)
return first_stage_model_decode(z)
# for SD1, cond_stage_model is CLIP and its NN is in the tranformer frield, but for SD2, it's open clip, and it's in model field
if hasattr(sd_model.cond_stage_model, 'model'):
sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model
to_remain_in_cpu = [
(sd_model, 'first_stage_model'),
(sd_model, 'depth_model'),
(sd_model, 'embedder'),
(sd_model, 'model'),
(sd_model, 'embedder'),
]
# remove several big modules: cond, first_stage, depth/embedder (if applicable), and unet from the model and then
# send the model to GPU. Then put modules back. the modules will be in CPU.
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), getattr(sd_model, 'embedder', None), sd_model.model
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.embedder, sd_model.model = None, None, None, None, None
is_sdxl = hasattr(sd_model, 'conditioner')
is_sd2 = not is_sdxl and hasattr(sd_model.cond_stage_model, 'model')
if is_sdxl:
to_remain_in_cpu.append((sd_model, 'conditioner'))
elif is_sd2:
to_remain_in_cpu.append((sd_model.cond_stage_model, 'model'))
else:
to_remain_in_cpu.append((sd_model.cond_stage_model, 'transformer'))
# remove several big modules: cond, first_stage, depth/embedder (if applicable), and unet from the model
stored = []
for obj, field in to_remain_in_cpu:
module = getattr(obj, field, None)
stored.append(module)
setattr(obj, field, None)
# send the model to GPU.
sd_model.to(devices.device)
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.embedder, sd_model.model = stored
# put modules back. the modules will be in CPU.
for (obj, field), module in zip(to_remain_in_cpu, stored):
setattr(obj, field, module)
# register hooks for those the first three models
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
if is_sdxl:
sd_model.conditioner.register_forward_pre_hook(send_me_to_gpu)
elif is_sd2:
sd_model.cond_stage_model.model.register_forward_pre_hook(send_me_to_gpu)
else:
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.encode = first_stage_model_encode_wrap
sd_model.first_stage_model.decode = first_stage_model_decode_wrap
@ -75,10 +102,6 @@ def setup_for_low_vram(sd_model, use_medvram):
sd_model.embedder.register_forward_pre_hook(send_me_to_gpu)
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
if hasattr(sd_model.cond_stage_model, 'model'):
sd_model.cond_stage_model.model = sd_model.cond_stage_model.transformer
del sd_model.cond_stage_model.transformer
if use_medvram:
sd_model.model.register_forward_pre_hook(send_me_to_gpu)
else:

View File

@ -20,7 +20,7 @@ assert sd_path is not None, f"Couldn't find Stable Diffusion in any of: {possibl
path_dirs = [
(sd_path, 'ldm', 'Stable Diffusion', []),
(os.path.join(sd_path, '../generative-models'), 'sgm', 'Stable Diffusion XL', []),
(os.path.join(sd_path, '../generative-models'), 'sgm', 'Stable Diffusion XL', ["sgm"]),
(os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []),
(os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []),
(os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]),
@ -36,6 +36,13 @@ for d, must_exist, what, options in path_dirs:
d = os.path.abspath(d)
if "atstart" in options:
sys.path.insert(0, d)
elif "sgm" in options:
# Stable Diffusion XL repo has scripts dir with __init__.py in it which ruins every extension's scripts dir, so we
# import sgm and remove it from sys.path so that when a script imports scripts.something, it doesbn't use sgm's scripts dir.
sys.path.insert(0, d)
import sgm
sys.path.pop(0)
else:
sys.path.append(d)
paths[what] = d

View File

@ -343,10 +343,13 @@ class StableDiffusionProcessing:
return cache[1]
def setup_conds(self):
prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height)
negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height)
sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data)
self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data)
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data)
self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data)
def parse_extra_network_prompts(self):
self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import re
from collections import namedtuple
from typing import List
@ -109,7 +111,19 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
def get_learned_conditioning(model, prompts, steps):
class SdConditioning(list):
"""
A list with prompts for stable diffusion's conditioner model.
Can also specify width and height of created image - SDXL needs it.
"""
def __init__(self, prompts, width=None, height=None):
super().__init__()
self.extend(prompts)
self.width = width or getattr(prompts, 'width', None)
self.height = height or getattr(prompts, 'height', None)
def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps):
"""converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
and the sampling step at which this condition is to be replaced by the next one.
@ -160,11 +174,13 @@ def get_learned_conditioning(model, prompts, steps):
re_AND = re.compile(r"\bAND\b")
re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
def get_multicond_prompt_list(prompts):
def get_multicond_prompt_list(prompts: SdConditioning | list[str]):
res_indexes = []
prompt_flat_list = []
prompt_indexes = {}
prompt_flat_list = SdConditioning(prompts)
prompt_flat_list.clear()
for prompt in prompts:
subprompts = re_AND.split(prompt)
@ -201,6 +217,7 @@ class MulticondLearnedConditioning:
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
For each prompt, the list is obtained by splitting the prompt using the AND separator.

View File

@ -15,6 +15,11 @@ import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
import ldm.modules.encoders.modules
import sgm.modules.attention
import sgm.modules.diffusionmodules.model
import sgm.modules.diffusionmodules.openaimodel
import sgm.modules.encoders.modules
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
@ -56,6 +61,9 @@ def apply_optimizations(option=None):
ldm.modules.diffusionmodules.model.nonlinearity = silu
ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
sgm.modules.diffusionmodules.model.nonlinearity = silu
sgm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
if current_optimizer is not None:
current_optimizer.undo()
current_optimizer = None
@ -89,6 +97,10 @@ def undo_optimizations():
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
sgm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
sgm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
def fix_checkpoint():
"""checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want
@ -170,10 +182,19 @@ class StableDiffusionModelHijack:
if conditioner:
for i in range(len(conditioner.embedders)):
embedder = conditioner.embedders[i]
if type(embedder).__name__ == 'FrozenOpenCLIPEmbedder':
typename = type(embedder).__name__
if typename == 'FrozenOpenCLIPEmbedder':
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self)
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(embedder, self)
conditioner.embedders[i] = m.cond_stage_model
if typename == 'FrozenCLIPEmbedder':
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(embedder, self)
conditioner.embedders[i] = m.cond_stage_model
if typename == 'FrozenOpenCLIPEmbedder2':
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self)
conditioner.embedders[i] = sd_hijack_open_clip.FrozenOpenCLIPEmbedder2WithCustomWords(embedder, self)
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
model_embeddings = m.cond_stage_model.roberta.embeddings

View File

@ -42,6 +42,10 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
self.hijack: sd_hijack.StableDiffusionModelHijack = hijack
self.chunk_length = 75
self.is_trainable = getattr(wrapped, 'is_trainable', False)
self.input_key = getattr(wrapped, 'input_key', 'txt')
self.legacy_ucg_val = None
def empty_chunk(self):
"""creates an empty PromptChunk and returns it"""
@ -199,8 +203,9 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
"""
Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts.
Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024.
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, for SD2 it's 1024, and for SDXL it's 1280.
An example shape returned by this function can be: (2, 77, 768).
For SDXL, instead of returning one tensor avobe, it returns a tuple with two: the other one with shape (B, 1280) with pooled values.
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
"""
@ -233,7 +238,10 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
embeddings_list = ", ".join([f'{name} [{embedding.checksum()}]' for name, embedding in used_embeddings.items()])
self.hijack.comments.append(f"Used embeddings: {embeddings_list}")
return torch.hstack(zs)
if getattr(self.wrapped, 'return_pooled', False):
return torch.hstack(zs), zs[0].pooled
else:
return torch.hstack(zs)
def process_tokens(self, remade_batch_tokens, batch_multipliers):
"""
@ -256,9 +264,9 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
batch_multipliers = torch.asarray(batch_multipliers).to(devices.device)
original_mean = z.mean()
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
new_mean = z.mean()
z = z * (original_mean / new_mean)
z *= (original_mean / new_mean)
return z

View File

@ -16,10 +16,6 @@ class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWit
self.id_end = tokenizer.encoder["<end_of_text>"]
self.id_pad = 0
self.is_trainable = getattr(wrapped, 'is_trainable', False)
self.input_key = getattr(wrapped, 'input_key', 'txt')
self.legacy_ucg_val = None
def tokenize(self, texts):
assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
@ -39,3 +35,37 @@ class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWit
embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0)
return embedded
class FrozenOpenCLIPEmbedder2WithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0]
self.id_start = tokenizer.encoder["<start_of_text>"]
self.id_end = tokenizer.encoder["<end_of_text>"]
self.id_pad = 0
def tokenize(self, texts):
assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
tokenized = [tokenizer.encode(text) for text in texts]
return tokenized
def encode_with_transformers(self, tokens):
d = self.wrapped.encode_with_transformer(tokens)
z = d[self.wrapped.layer]
pooled = d.get("pooled")
if pooled is not None:
z.pooled = pooled
return z
def encode_embedding_init_text(self, init_text, nvpt):
ids = tokenizer.encode(init_text)
ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0)
return embedded

View File

@ -14,7 +14,11 @@ from modules.hypernetworks import hypernetwork
import ldm.modules.attention
import ldm.modules.diffusionmodules.model
import sgm.modules.attention
import sgm.modules.diffusionmodules.model
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
sgm_diffusionmodules_model_AttnBlock_forward = sgm.modules.diffusionmodules.model.AttnBlock.forward
class SdOptimization:
@ -39,6 +43,9 @@ class SdOptimization:
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
sgm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = sgm_diffusionmodules_model_AttnBlock_forward
class SdOptimizationXformers(SdOptimization):
name = "xformers"
@ -51,6 +58,8 @@ class SdOptimizationXformers(SdOptimization):
def apply(self):
ldm.modules.attention.CrossAttention.forward = xformers_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward
sgm.modules.attention.CrossAttention.forward = xformers_attention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward
class SdOptimizationSdpNoMem(SdOptimization):
@ -65,6 +74,8 @@ class SdOptimizationSdpNoMem(SdOptimization):
def apply(self):
ldm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward
sgm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward
class SdOptimizationSdp(SdOptimizationSdpNoMem):
@ -76,6 +87,8 @@ class SdOptimizationSdp(SdOptimizationSdpNoMem):
def apply(self):
ldm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_attnblock_forward
sgm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = sdp_attnblock_forward
class SdOptimizationSubQuad(SdOptimization):
@ -86,6 +99,8 @@ class SdOptimizationSubQuad(SdOptimization):
def apply(self):
ldm.modules.attention.CrossAttention.forward = sub_quad_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sub_quad_attnblock_forward
sgm.modules.attention.CrossAttention.forward = sub_quad_attention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = sub_quad_attnblock_forward
class SdOptimizationV1(SdOptimization):
@ -94,9 +109,9 @@ class SdOptimizationV1(SdOptimization):
cmd_opt = "opt_split_attention_v1"
priority = 10
def apply(self):
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
class SdOptimizationInvokeAI(SdOptimization):
@ -109,6 +124,7 @@ class SdOptimizationInvokeAI(SdOptimization):
def apply(self):
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_invokeAI
sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward_invokeAI
class SdOptimizationDoggettx(SdOptimization):
@ -119,6 +135,8 @@ class SdOptimizationDoggettx(SdOptimization):
def apply(self):
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward
sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward
def list_optimizers(res):
@ -155,7 +173,7 @@ def get_available_vram():
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
def split_cross_attention_forward_v1(self, x, context=None, mask=None, additional_tokens=None, n_times_crossframe_attn_in_self=0):
h = self.heads
q_in = self.to_q(x)
@ -196,7 +214,7 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
# taken from https://github.com/Doggettx/stable-diffusion and modified
def split_cross_attention_forward(self, x, context=None, mask=None):
def split_cross_attention_forward(self, x, context=None, mask=None, additional_tokens=None, n_times_crossframe_attn_in_self=0):
h = self.heads
q_in = self.to_q(x)
@ -262,11 +280,13 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
# -- Taken from https://github.com/invoke-ai/InvokeAI and modified --
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
def einsum_op_compvis(q, k, v):
s = einsum('b i d, b j d -> b i j', q, k)
s = s.softmax(dim=-1, dtype=s.dtype)
return einsum('b i j, b j d -> b i d', s, v)
def einsum_op_slice_0(q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], slice_size):
@ -274,6 +294,7 @@ def einsum_op_slice_0(q, k, v, slice_size):
r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
return r
def einsum_op_slice_1(q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[1], slice_size):
@ -281,6 +302,7 @@ def einsum_op_slice_1(q, k, v, slice_size):
r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
return r
def einsum_op_mps_v1(q, k, v):
if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096
return einsum_op_compvis(q, k, v)
@ -290,12 +312,14 @@ def einsum_op_mps_v1(q, k, v):
slice_size -= 1
return einsum_op_slice_1(q, k, v, slice_size)
def einsum_op_mps_v2(q, k, v):
if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16:
return einsum_op_compvis(q, k, v)
else:
return einsum_op_slice_0(q, k, v, 1)
def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
if size_mb <= max_tensor_mb:
@ -305,6 +329,7 @@ def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
return einsum_op_slice_0(q, k, v, q.shape[0] // div)
return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
def einsum_op_cuda(q, k, v):
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
@ -315,6 +340,7 @@ def einsum_op_cuda(q, k, v):
# Divide factor of safety as there's copying and fragmentation
return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
def einsum_op(q, k, v):
if q.device.type == 'cuda':
return einsum_op_cuda(q, k, v)
@ -328,7 +354,8 @@ def einsum_op(q, k, v):
# Tested on i7 with 8MB L3 cache.
return einsum_op_tensor_mem(q, k, v, 32)
def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None, additional_tokens=None, n_times_crossframe_attn_in_self=0):
h = self.heads
q = self.to_q(x)
@ -356,7 +383,7 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
# Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1
# The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface
def sub_quad_attention_forward(self, x, context=None, mask=None):
def sub_quad_attention_forward(self, x, context=None, mask=None, additional_tokens=None, n_times_crossframe_attn_in_self=0):
assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor."
h = self.heads
@ -392,6 +419,7 @@ def sub_quad_attention_forward(self, x, context=None, mask=None):
return x
def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True):
bytes_per_token = torch.finfo(q.dtype).bits//8
batch_x_heads, q_tokens, _ = q.shape
@ -442,7 +470,7 @@ def get_xformers_flash_attention_op(q, k, v):
return None
def xformers_attention_forward(self, x, context=None, mask=None):
def xformers_attention_forward(self, x, context=None, mask=None, additional_tokens=None, n_times_crossframe_attn_in_self=0):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
@ -465,9 +493,10 @@ def xformers_attention_forward(self, x, context=None, mask=None):
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
return self.to_out(out)
# Based on Diffusers usage of scaled dot product attention from https://github.com/huggingface/diffusers/blob/c7da8fd23359a22d0df2741688b5b4f33c26df21/src/diffusers/models/cross_attention.py
# The scaled_dot_product_attention_forward function contains parts of code under Apache-2.0 license listed under Scaled Dot Product Attention in the Licenses section of the web UI interface
def scaled_dot_product_attention_forward(self, x, context=None, mask=None):
def scaled_dot_product_attention_forward(self, x, context=None, mask=None, additional_tokens=None, n_times_crossframe_attn_in_self=0):
batch_size, sequence_length, inner_dim = x.shape
if mask is not None:
@ -507,10 +536,12 @@ def scaled_dot_product_attention_forward(self, x, context=None, mask=None):
hidden_states = self.to_out[1](hidden_states)
return hidden_states
def scaled_dot_product_no_mem_attention_forward(self, x, context=None, mask=None):
def scaled_dot_product_no_mem_attention_forward(self, x, context=None, mask=None, additional_tokens=None, n_times_crossframe_attn_in_self=0):
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
return scaled_dot_product_attention_forward(self, x, context, mask)
def cross_attention_attnblock_forward(self, x):
h_ = x
h_ = self.norm(h_)
@ -569,6 +600,7 @@ def cross_attention_attnblock_forward(self, x):
return h3
def xformers_attnblock_forward(self, x):
try:
h_ = x
@ -592,6 +624,7 @@ def xformers_attnblock_forward(self, x):
except NotImplementedError:
return cross_attention_attnblock_forward(self, x)
def sdp_attnblock_forward(self, x):
h_ = x
h_ = self.norm(h_)
@ -612,10 +645,12 @@ def sdp_attnblock_forward(self, x):
out = self.proj_out(out)
return x + out
def sdp_no_mem_attnblock_forward(self, x):
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
return sdp_attnblock_forward(self, x)
def sub_quad_attnblock_forward(self, x):
h_ = x
h_ = self.norm(h_)

View File

@ -411,6 +411,7 @@ def repair_config(sd_config):
sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight'
sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'
sdxl_clip_weight = 'conditioner.embedders.1.model.ln_final.weight'
class SdModelData:
@ -445,6 +446,15 @@ class SdModelData:
model_data = SdModelData()
def get_empty_cond(sd_model):
if hasattr(sd_model, 'conditioner'):
d = sd_model.get_learned_conditioning([""])
return d['crossattn']
else:
return sd_model.cond_stage_model([""])
def load_model(checkpoint_info=None, already_loaded_state_dict=None):
from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
@ -465,7 +475,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
clip_is_included_into_sd = sd1_clip_weight in state_dict or sd2_clip_weight in state_dict
clip_is_included_into_sd = sd1_clip_weight in state_dict or sd2_clip_weight in state_dict or sdxl_clip_weight in state_dict
timer.record("find config")
@ -517,7 +527,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
timer.record("scripts callbacks")
with devices.autocast(), torch.no_grad():
sd_model.cond_stage_model_empty_prompt = sd_model.cond_stage_model([""])
sd_model.cond_stage_model_empty_prompt = get_empty_cond(sd_model)
timer.record("calculate empty prompt")

View File

@ -14,6 +14,7 @@ config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
config_sd2v = os.path.join(sd_xl_repo_configs_path, "sd_2_1_768.yaml")
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
config_sdxl = os.path.join(sd_xl_repo_configs_path, "sd_xl_base.yaml")
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml")
@ -70,7 +71,9 @@ def guess_model_config_from_state_dict(sd, filename):
diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
if sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
if sd.get('conditioner.embedders.1.model.ln_final.weight', None) is not None:
return config_sdxl
elif sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
return config_depth_model
elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768:
return config_unclip

View File

@ -1,18 +1,30 @@
from __future__ import annotations
import sys
import torch
import sgm.models.diffusion
import sgm.modules.diffusionmodules.denoiser_scaling
import sgm.modules.diffusionmodules.discretizer
from modules import devices
from modules import devices, shared, prompt_parser
def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch: list[str]):
def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch: prompt_parser.SdConditioning | list[str]):
for embedder in self.conditioner.embedders:
embedder.ucg_rate = 0.0
c = self.conditioner({'txt': batch})
width = getattr(self, 'target_width', 1024)
height = getattr(self, 'target_height', 1024)
sdxl_conds = {
"txt": batch,
"original_size_as_tuple": torch.tensor([height, width]).repeat(len(batch), 1).to(devices.device, devices.dtype),
"crop_coords_top_left": torch.tensor([shared.opts.sdxl_crop_top, shared.opts.sdxl_crop_left]).repeat(len(batch), 1).to(devices.device, devices.dtype),
"target_size_as_tuple": torch.tensor([height, width]).repeat(len(batch), 1).to(devices.device, devices.dtype),
}
c = self.conditioner(sdxl_conds)
return c
@ -26,7 +38,7 @@ def extend_sdxl(model):
model.model.diffusion_model.dtype = dtype
model.model.conditioning_key = 'crossattn'
model.cond_stage_model = [x for x in model.conditioner.embedders if type(x).__name__ == 'FrozenOpenCLIPEmbedder'][0]
model.cond_stage_model = [x for x in model.conditioner.embedders if 'CLIPEmbedder' in type(x).__name__][0]
model.cond_stage_key = model.cond_stage_model.input_key
model.parameterization = "v" if isinstance(model.denoiser.scaling, sgm.modules.diffusionmodules.denoiser_scaling.VScaling) else "eps"
@ -34,7 +46,14 @@ def extend_sdxl(model):
discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization()
model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=dtype)
model.is_xl = True
sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning
sgm.models.diffusion.DiffusionEngine.apply_model = apply_model
sgm.modules.attention.print = lambda *args: None
sgm.modules.diffusionmodules.model.print = lambda *args: None
sgm.modules.diffusionmodules.openaimodel.print = lambda *args: None
sgm.modules.encoders.modules.print = lambda *args: None

View File

@ -186,7 +186,7 @@ class CFGDenoiser(torch.nn.Module):
for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset
b = a + batch_size
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(cond_in[a:b], image_cond_in[a:b]))
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(subscript_cond(cond_in, a, b), image_cond_in[a:b]))
else:
x_out = torch.zeros_like(x_in)
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size

View File

@ -428,6 +428,8 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors"),
"sdxl_crop_top": OptionInfo(0, "SDXL top coordinate of the crop"),
"sdxl_crop_left": OptionInfo(0, "SDXL left coordinate of the crop"),
}))
options_templates.update(options_section(('optimizations', "Optimizations"), {

View File

@ -14,6 +14,7 @@ kornia
lark
numpy
omegaconf
open-clip-torch
piexif
psutil

View File

@ -15,6 +15,7 @@ kornia==0.6.7
lark==1.1.2
numpy==1.23.5
omegaconf==2.2.3
open-clip-torch==2.20.0
piexif==1.1.3
psutil~=5.9.5
pytorch_lightning==1.9.4