Merge branch 'AUTOMATIC1111:master' into small-touch-up

This commit is contained in:
Taithrah 2023-01-08 15:58:53 -05:00 committed by GitHub
commit e9d7eff70a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 528 additions and 124 deletions

View File

@ -1,7 +1,7 @@
name: Feature request
description: Suggest an idea for this project
title: "[Feature Request]: "
labels: ["suggestion"]
labels: ["enhancement"]
body:
- type: checkboxes

View File

@ -1,9 +1,7 @@
# Stable Diffusion web UI
A browser interface based on Gradio library for Stable Diffusion.
![](txt2img_Screenshot.png)
Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) wiki page for extra scripts developed by users.
![](screenshot.png)
## Features
[Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features):
@ -97,9 +95,8 @@ Alternatively, use online services (like Google Colab):
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
2. Install [git](https://git-scm.com/download/win).
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
4. Place `model.ckpt` in the `models` directory (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it).
5. _*(Optional)*_ Place `GFPGANv1.4.pth` in the base directory, alongside `webui.py` (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it).
6. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
4. Place stable diffusion checkpoint (`model.ckpt`) in the `models/Stable-diffusion` directory (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it).
5. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
### Automatic Installation on Linux
1. Install the dependencies:
@ -141,6 +138,7 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
- Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention)
- Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot

View File

@ -184,7 +184,7 @@ SOFTWARE.
</pre>
<h2><a href="https://github.com/JingyunLiang/SwinIR/blob/main/LICENSE">SwinIR</a></h2>
<small>Code added by contirubtors, most likely copied from this repository.</small>
<small>Code added by contributors, most likely copied from this repository.</small>
<pre>
Apache License
@ -390,3 +390,30 @@ SOFTWARE.
limitations under the License.
</pre>
<h2><a href="https://github.com/AminRezaei0x443/memory-efficient-attention/blob/main/LICENSE">Memory Efficient Attention</a></h2>
<small>The sub-quadratic cross attention optimization uses modified code from the Memory Efficient Attention package that Alex Birch optimized for 3D tensors. This license is updated to reflect that.</small>
<pre>
MIT License
Copyright (c) 2023 Alex Birch
Copyright (c) 2023 Amin Rezaei
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
</pre>

View File

@ -11,7 +11,7 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials
from secrets import compare_digest
import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack, images
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.extras import run_extras
@ -28,8 +28,13 @@ def upscaler_to_index(name: str):
try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
except:
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}")
def script_name_to_index(name, scripts):
try:
return [script.title().lower() for script in scripts].index(name.lower())
except:
raise HTTPException(status_code=422, detail=f"Script '{name}' not found")
def validate_sampler_name(name):
config = sd_samplers.all_samplers_map.get(name, None)
@ -143,7 +148,21 @@ class Api:
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
def get_script(self, script_name, script_runner):
if script_name is None:
return None, None
if not script_runner.scripts:
script_runner.initialize_scripts(False)
ui.create_ui()
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
script = script_runner.selectable_scripts[script_idx]
return script, script_idx
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img)
populate = txt2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
"do_not_save_samples": True,
@ -153,14 +172,22 @@ class Api:
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
args = vars(populate)
args.pop('script_name', None)
with self.queue_lock:
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **vars(populate))
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
shared.state.begin()
processed = process_images(p)
if script is not None:
p.outpath_grids = opts.outdir_txt2img_grids
p.outpath_samples = opts.outdir_txt2img_samples
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
processed = scripts.scripts_txt2img.run(p, *p.script_args)
else:
processed = process_images(p)
shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images))
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
@ -170,6 +197,8 @@ class Api:
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img)
mask = img2imgreq.mask
if mask:
mask = decode_base64_to_image(mask)
@ -186,13 +215,20 @@ class Api:
args = vars(populate)
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
args.pop('script_name', None)
with self.queue_lock:
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
p.init_images = [decode_base64_to_image(x) for x in init_images]
shared.state.begin()
processed = process_images(p)
if script is not None:
p.outpath_grids = opts.outdir_img2img_grids
p.outpath_samples = opts.outdir_img2img_samples
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
processed = scripts.scripts_img2img.run(p, *p.script_args)
else:
processed = process_images(p)
shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images))

View File

@ -100,13 +100,13 @@ class PydanticModelGenerator:
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingTxt2Img",
StableDiffusionProcessingTxt2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}]
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
).generate_model()
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingImg2Img",
StableDiffusionProcessingImg2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
).generate_model()
class TextToImageResponse(BaseModel):
@ -125,7 +125,7 @@ class ExtrasBaseRequest(BaseModel):
gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.")
codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.")
codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.")
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.")
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.")
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?")

View File

@ -98,7 +98,7 @@ class StableDiffusionProcessing():
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None):
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
if sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
@ -149,7 +149,7 @@ class StableDiffusionProcessing():
self.seed_resize_from_w = 0
self.scripts = None
self.script_args = None
self.script_args = script_args
self.all_prompts = None
self.all_negative_prompts = None
self.all_seeds = None

View File

@ -7,8 +7,6 @@ from modules.hypernetworks import hypernetwork
from modules.shared import cmd_opts
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr
from modules.sd_hijack_optimizations import invokeAI_mps_available
import ldm.modules.attention
import ldm.modules.diffusionmodules.model
import ldm.modules.diffusionmodules.openaimodel
@ -43,20 +41,19 @@ def apply_optimizations():
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
optimization_method = 'xformers'
elif cmd_opts.opt_sub_quad_attention:
print("Applying sub-quadratic cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.sub_quad_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sub_quad_attnblock_forward
optimization_method = 'sub-quadratic'
elif cmd_opts.opt_split_attention_v1:
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
optimization_method = 'V1'
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
if not invokeAI_mps_available and shared.device.type == 'mps':
print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.")
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
optimization_method = 'V1'
else:
print("Applying cross attention optimization (InvokeAI).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
optimization_method = 'InvokeAI'
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not cmd_opts.opt_split_attention and not torch.cuda.is_available()):
print("Applying cross attention optimization (InvokeAI).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
optimization_method = 'InvokeAI'
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
print("Applying cross attention optimization (Doggettx).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
@ -86,10 +83,12 @@ class StableDiffusionModelHijack:
clip = None
optimization_method = None
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir)
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
def __init__(self):
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
def hijack(self, m):
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
model_embeddings = m.cond_stage_model.roberta.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
@ -120,7 +119,6 @@ class StableDiffusionModelHijack:
self.layers = flatten(m)
def undo_hijack(self, m):
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
m.cond_stage_model = m.cond_stage_model.wrapped

View File

@ -247,9 +247,9 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
batch_multipliers = torch.asarray(batch_multipliers).to(devices.device)
original_mean = z.mean()
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
new_mean = z.mean()
z *= original_mean / new_mean
z = z * (original_mean / new_mean)
return z

View File

@ -1,7 +1,7 @@
import math
import sys
import traceback
import importlib
import psutil
import torch
from torch import einsum
@ -12,6 +12,8 @@ from einops import rearrange
from modules import shared
from modules.hypernetworks import hypernetwork
from .sub_quadratic_attention import efficient_dot_product_attention
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
try:
@ -22,6 +24,19 @@ if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
print(traceback.format_exc(), file=sys.stderr)
def get_available_vram():
if shared.device.type == 'cuda':
stats = torch.cuda.memory_stats(shared.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
return mem_free_total
else:
return psutil.virtual_memory().available
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
h = self.heads
@ -76,12 +91,7 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
mem_free_total = get_available_vram()
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
@ -118,19 +128,8 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
return self.to_out(r2)
def check_for_psutil():
try:
spec = importlib.util.find_spec('psutil')
return spec is not None
except ModuleNotFoundError:
return False
invokeAI_mps_available = check_for_psutil()
# -- Taken from https://github.com/invoke-ai/InvokeAI and modified --
if invokeAI_mps_available:
import psutil
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
def einsum_op_compvis(q, k, v):
s = einsum('b i d, b j d -> b i j', q, k)
@ -215,6 +214,71 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
# -- End of code from https://github.com/invoke-ai/InvokeAI --
# Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1
# The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface
def sub_quad_attention_forward(self, x, context=None, mask=None):
assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor."
h = self.heads
q = self.to_q(x)
context = default(context, x)
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
k = self.to_k(context_k)
v = self.to_v(context_v)
del context, context_k, context_v, x
q = q.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2)
out_proj, dropout = self.to_out
x = out_proj(x)
x = dropout(x)
return x
def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True):
bytes_per_token = torch.finfo(q.dtype).bits//8
batch_x_heads, q_tokens, _ = q.shape
_, k_tokens, _ = k.shape
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
if chunk_threshold is None:
chunk_threshold_bytes = int(get_available_vram() * 0.9) if q.device.type == 'mps' else int(get_available_vram() * 0.7)
elif chunk_threshold == 0:
chunk_threshold_bytes = None
else:
chunk_threshold_bytes = int(0.01 * chunk_threshold * get_available_vram())
if kv_chunk_size_min is None and chunk_threshold_bytes is not None:
kv_chunk_size_min = chunk_threshold_bytes // (batch_x_heads * bytes_per_token * (k.shape[2] + v.shape[2]))
elif kv_chunk_size_min == 0:
kv_chunk_size_min = None
if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
# the big matmul fits into our memory limit; do everything in 1 chunk,
# i.e. send it down the unchunked fast-path
query_chunk_size = q_tokens
kv_chunk_size = k_tokens
return efficient_dot_product_attention(
q,
k,
v,
query_chunk_size=q_chunk_size,
kv_chunk_size=kv_chunk_size,
kv_chunk_size_min = kv_chunk_size_min,
use_checkpoint=use_checkpoint,
)
def xformers_attention_forward(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
@ -252,12 +316,7 @@ def cross_attention_attnblock_forward(self, x):
h_ = torch.zeros_like(k, device=q.device)
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
mem_free_total = get_available_vram()
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
mem_required = tensor_size * 2.5
@ -312,3 +371,19 @@ def xformers_attnblock_forward(self, x):
return x + out
except NotImplementedError:
return cross_attention_attnblock_forward(self, x)
def sub_quad_attnblock_forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
out = rearrange(out, 'b (h w) c -> b c h w', h=h)
out = self.proj_out(out)
return x + out

View File

@ -56,6 +56,10 @@ parser.add_argument("--xformers", action='store_true', help="enable xformers for
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything")
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
parser.add_argument("--opt-sub-quad-attention", action='store_true', help="enable memory efficient sub-quadratic cross-attention layer optimization")
parser.add_argument("--sub-quad-q-chunk-size", type=int, help="query chunk size for the sub-quadratic cross-attention layer optimization to use", default=1024)
parser.add_argument("--sub-quad-kv-chunk-size", type=int, help="kv chunk size for the sub-quadratic cross-attention layer optimization to use", default=None)
parser.add_argument("--sub-quad-chunk-threshold", type=int, help="the percentage of VRAM threshold for the sub-quadratic cross-attention layer optimization to use chunking", default=None)
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")

View File

@ -0,0 +1,205 @@
# original source:
# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py
# license:
# MIT License (see Memory Efficient Attention under the Licenses section in the web UI interface for the full license)
# credit:
# Amin Rezaei (original author)
# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks)
# brkirch (modified to use torch.narrow instead of dynamic_slice implementation)
# implementation of:
# Self-attention Does Not Need O(n2) Memory":
# https://arxiv.org/abs/2112.05682v2
from functools import partial
import torch
from torch import Tensor
from torch.utils.checkpoint import checkpoint
import math
from typing import Optional, NamedTuple, Protocol, List
def narrow_trunc(
input: Tensor,
dim: int,
start: int,
length: int
) -> Tensor:
return torch.narrow(input, dim, start, length if input.shape[dim] >= start + length else input.shape[dim] - start)
class AttnChunk(NamedTuple):
exp_values: Tensor
exp_weights_sum: Tensor
max_score: Tensor
class SummarizeChunk(Protocol):
@staticmethod
def __call__(
query: Tensor,
key: Tensor,
value: Tensor,
) -> AttnChunk: ...
class ComputeQueryChunkAttn(Protocol):
@staticmethod
def __call__(
query: Tensor,
key: Tensor,
value: Tensor,
) -> Tensor: ...
def _summarize_chunk(
query: Tensor,
key: Tensor,
value: Tensor,
scale: float,
) -> AttnChunk:
attn_weights = torch.baddbmm(
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
query,
key.transpose(1,2),
alpha=scale,
beta=0,
)
max_score, _ = torch.max(attn_weights, -1, keepdim=True)
max_score = max_score.detach()
exp_weights = torch.exp(attn_weights - max_score)
exp_values = torch.bmm(exp_weights, value)
max_score = max_score.squeeze(-1)
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
def _query_chunk_attention(
query: Tensor,
key: Tensor,
value: Tensor,
summarize_chunk: SummarizeChunk,
kv_chunk_size: int,
) -> Tensor:
batch_x_heads, k_tokens, k_channels_per_head = key.shape
_, _, v_channels_per_head = value.shape
def chunk_scanner(chunk_idx: int) -> AttnChunk:
key_chunk = narrow_trunc(
key,
1,
chunk_idx,
kv_chunk_size
)
value_chunk = narrow_trunc(
value,
1,
chunk_idx,
kv_chunk_size
)
return summarize_chunk(query, key_chunk, value_chunk)
chunks: List[AttnChunk] = [
chunk_scanner(chunk) for chunk in torch.arange(0, k_tokens, kv_chunk_size)
]
acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks)))
chunk_values, chunk_weights, chunk_max = acc_chunk
global_max, _ = torch.max(chunk_max, 0, keepdim=True)
max_diffs = torch.exp(chunk_max - global_max)
chunk_values *= torch.unsqueeze(max_diffs, -1)
chunk_weights *= max_diffs
all_values = chunk_values.sum(dim=0)
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
return all_values / all_weights
# TODO: refactor CrossAttention#get_attention_scores to share code with this
def _get_attention_scores_no_kv_chunking(
query: Tensor,
key: Tensor,
value: Tensor,
scale: float,
) -> Tensor:
attn_scores = torch.baddbmm(
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
query,
key.transpose(1,2),
alpha=scale,
beta=0,
)
attn_probs = attn_scores.softmax(dim=-1)
del attn_scores
hidden_states_slice = torch.bmm(attn_probs, value)
return hidden_states_slice
class ScannedChunk(NamedTuple):
chunk_idx: int
attn_chunk: AttnChunk
def efficient_dot_product_attention(
query: Tensor,
key: Tensor,
value: Tensor,
query_chunk_size=1024,
kv_chunk_size: Optional[int] = None,
kv_chunk_size_min: Optional[int] = None,
use_checkpoint=True,
):
"""Computes efficient dot-product attention given query, key, and value.
This is efficient version of attention presented in
https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements.
Args:
query: queries for calculating attention with shape of
`[batch * num_heads, tokens, channels_per_head]`.
key: keys for calculating attention with shape of
`[batch * num_heads, tokens, channels_per_head]`.
value: values to be used in attention with shape of
`[batch * num_heads, tokens, channels_per_head]`.
query_chunk_size: int: query chunks size
kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens)
kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done).
use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference)
Returns:
Output of shape `[batch * num_heads, query_tokens, channels_per_head]`.
"""
batch_x_heads, q_tokens, q_channels_per_head = query.shape
_, k_tokens, _ = key.shape
scale = q_channels_per_head ** -0.5
kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens)
if kv_chunk_size_min is not None:
kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min)
def get_query_chunk(chunk_idx: int) -> Tensor:
return narrow_trunc(
query,
1,
chunk_idx,
min(query_chunk_size, q_tokens)
)
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale)
summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
_get_attention_scores_no_kv_chunking,
scale=scale
) if k_tokens <= kv_chunk_size else (
# fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw)
partial(
_query_chunk_attention,
kv_chunk_size=kv_chunk_size,
summarize_chunk=summarize_chunk,
)
)
if q_tokens <= query_chunk_size:
# fast-path for when there's just 1 query chunk
return compute_query_chunk_attn(
query=query,
key=key,
value=value,
)
# TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance,
# and pass slices to be mutated, instead of torch.cat()ing the returned slices
res = torch.cat([
compute_query_chunk_attn(
query=get_query_chunk(i * query_chunk_size),
key=key,
value=value,
) for i in range(math.ceil(q_tokens / query_chunk_size))
], dim=1)
return res

View File

@ -66,17 +66,41 @@ class Embedding:
return self.cached_checksum
class DirWithTextualInversionEmbeddings:
def __init__(self, path):
self.path = path
self.mtime = None
def has_changed(self):
if not os.path.isdir(self.path):
return False
mt = os.path.getmtime(self.path)
if self.mtime is None or mt > self.mtime:
return True
def update(self):
if not os.path.isdir(self.path):
return
self.mtime = os.path.getmtime(self.path)
class EmbeddingDatabase:
def __init__(self, embeddings_dir):
def __init__(self):
self.ids_lookup = {}
self.word_embeddings = {}
self.skipped_embeddings = {}
self.dir_mtime = None
self.embeddings_dir = embeddings_dir
self.expected_shape = -1
self.embedding_dirs = {}
def add_embedding_dir(self, path):
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
def clear_embedding_dirs(self):
self.embedding_dirs.clear()
def register_embedding(self, embedding, model):
self.word_embeddings[embedding.name] = embedding
ids = model.cond_stage_model.tokenize([embedding.name])[0]
@ -93,65 +117,62 @@ class EmbeddingDatabase:
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
return vec.shape[1]
def load_textual_inversion_embeddings(self, force_reload = False):
mt = os.path.getmtime(self.embeddings_dir)
if not force_reload and self.dir_mtime is not None and mt <= self.dir_mtime:
return
def load_from_file(self, path, filename):
name, ext = os.path.splitext(filename)
ext = ext.upper()
self.dir_mtime = mt
self.ids_lookup.clear()
self.word_embeddings.clear()
self.skipped_embeddings.clear()
self.expected_shape = self.get_expected_shape()
def process_file(path, filename):
name, ext = os.path.splitext(filename)
ext = ext.upper()
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
name = data.get('name', name)
else:
data = extract_image_data_embed(embed_image)
name = data.get('name', name)
elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
else:
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
_, second_ext = os.path.splitext(name)
if second_ext.upper() == '.PREVIEW':
return
# textual inversion embeddings
if 'string_to_param' in data:
param_dict = data['string_to_param']
if hasattr(param_dict, '_parameters'):
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1]
# diffuser concepts
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
emb = next(iter(data.values()))
if len(emb.shape) == 1:
emb = emb.unsqueeze(0)
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
name = data.get('name', name)
else:
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
data = extract_image_data_embed(embed_image)
name = data.get('name', name)
elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
else:
return
vec = emb.detach().to(devices.device, dtype=torch.float32)
embedding = Embedding(vec, name)
embedding.step = data.get('step', None)
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
embedding.vectors = vec.shape[0]
embedding.shape = vec.shape[-1]
# textual inversion embeddings
if 'string_to_param' in data:
param_dict = data['string_to_param']
if hasattr(param_dict, '_parameters'):
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1]
# diffuser concepts
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
self.register_embedding(embedding, shared.sd_model)
else:
self.skipped_embeddings[name] = embedding
emb = next(iter(data.values()))
if len(emb.shape) == 1:
emb = emb.unsqueeze(0)
else:
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
for root, dirs, fns in os.walk(self.embeddings_dir):
vec = emb.detach().to(devices.device, dtype=torch.float32)
embedding = Embedding(vec, name)
embedding.step = data.get('step', None)
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
embedding.vectors = vec.shape[0]
embedding.shape = vec.shape[-1]
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
self.register_embedding(embedding, shared.sd_model)
else:
self.skipped_embeddings[name] = embedding
def load_from_dir(self, embdir):
if not os.path.isdir(embdir.path):
return
for root, dirs, fns in os.walk(embdir.path):
for fn in fns:
try:
fullfn = os.path.join(root, fn)
@ -159,12 +180,32 @@ class EmbeddingDatabase:
if os.stat(fullfn).st_size == 0:
continue
process_file(fullfn, fn)
self.load_from_file(fullfn, fn)
except Exception:
print(f"Error loading embedding {fn}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
continue
def load_textual_inversion_embeddings(self, force_reload=False):
if not force_reload:
need_reload = False
for path, embdir in self.embedding_dirs.items():
if embdir.has_changed():
need_reload = True
break
if not need_reload:
return
self.ids_lookup.clear()
self.word_embeddings.clear()
self.skipped_embeddings.clear()
self.expected_shape = self.get_expected_shape()
for path, embdir in self.embedding_dirs.items():
self.load_from_dir(embdir)
embdir.update()
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
if len(self.skipped_embeddings) > 0:
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
@ -247,14 +288,15 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
assert os.path.isfile(template_file), "Prompt template file doesn't exist"
assert steps, "Max steps is empty or 0"
assert isinstance(steps, int), "Max steps must be integer"
assert steps > 0 , "Max steps must be positive"
assert steps > 0, "Max steps must be positive"
assert isinstance(save_model_every, int), "Save {name} must be integer"
assert save_model_every >= 0 , "Save {name} must be positive or 0"
assert save_model_every >= 0, "Save {name} must be positive or 0"
assert isinstance(create_image_every, int), "Create image must be integer"
assert create_image_every >= 0 , "Create image must be positive or 0"
assert create_image_every >= 0, "Create image must be positive or 0"
if save_model_every or create_image_every:
assert log_directory, "Log directory is empty"
def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
save_embedding_every = save_embedding_every or 0
create_image_every = create_image_every or 0

View File

@ -267,7 +267,7 @@ def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resiz
with devices.autocast():
p.init([""], [0], [0])
return f"resize to: <span class='resolution'>{p.hr_upscale_to_x}x{p.hr_upscale_to_y}</span>"
return f"resize: from <span class='resolution'>{width}x{height}</span> to <span class='resolution'>{p.hr_upscale_to_x}x{p.hr_upscale_to_y}</span>"
def apply_styles(prompt, prompt_neg, style1_name, style2_name):

View File

@ -30,4 +30,4 @@ inflection
GitPython
torchsde
safetensors
psutil; sys_platform == 'darwin'
psutil

Binary file not shown.

Before

Width:  |  Height:  |  Size: 513 KiB

After

Width:  |  Height:  |  Size: 411 KiB

View File

@ -25,6 +25,8 @@ class Script(scripts.Script):
return [info, overlap, upscaler_index, scale_factor]
def run(self, p, _, overlap, upscaler_index, scale_factor):
if isinstance(upscaler_index, str):
upscaler_index = [x.name.lower() for x in shared.sd_upscalers].index(upscaler_index.lower())
processing.fix_seed(p)
upscaler = shared.sd_upscalers[upscaler_index]

View File

@ -512,7 +512,7 @@ input[type="range"]{
border: none;
background: none;
flex: unset;
gap: 0.5em;
gap: 1em;
}
#quicksettings > div > div{
@ -521,6 +521,17 @@ input[type="range"]{
padding: 0;
}
#quicksettings > div > div > div > div > label > span {
position: relative;
margin-right: 9em;
margin-bottom: -1em;
}
#quicksettings > div > div > label > span {
position: relative;
margin-bottom: -1em;
}
canvas[key="mask"] {
z-index: 12 !important;
filter: invert();

View File

@ -50,6 +50,12 @@ class TestImg2ImgWorking(unittest.TestCase):
self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(r"test/test_files/mask_basic.png"))
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
def test_img2img_sd_upscale_performed(self):
self.simple_img2img["script_name"] = "sd upscale"
self.simple_img2img["script_args"] = ["", 8, "Lanczos", 2.0]
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
if __name__ == "__main__":
unittest.main()

Binary file not shown.

Before

Width:  |  Height:  |  Size: 329 KiB