304 lines
11 KiB
Python
304 lines
11 KiB
Python
import os
|
|
import re
|
|
import shutil
|
|
import json
|
|
|
|
|
|
import torch
|
|
import tqdm
|
|
|
|
from modules import shared, images, sd_models, sd_vae, sd_models_config
|
|
from modules.ui_common import plaintext_to_html
|
|
import gradio as gr
|
|
import safetensors.torch
|
|
|
|
|
|
def run_pnginfo(image):
|
|
if image is None:
|
|
return '', '', ''
|
|
|
|
geninfo, items = images.read_info_from_image(image)
|
|
items = {**{'parameters': geninfo}, **items}
|
|
|
|
info = ''
|
|
for key, text in items.items():
|
|
info += f"""
|
|
<div>
|
|
<p><b>{plaintext_to_html(str(key))}</b></p>
|
|
<p>{plaintext_to_html(str(text))}</p>
|
|
</div>
|
|
""".strip()+"\n"
|
|
|
|
if len(info) == 0:
|
|
message = "Nothing found in the image."
|
|
info = f"<div><p>{message}<p></div>"
|
|
|
|
return '', geninfo, info
|
|
|
|
|
|
def create_config(ckpt_result, config_source, a, b, c):
|
|
def config(x):
|
|
res = sd_models_config.find_checkpoint_config_near_filename(x) if x else None
|
|
return res if res != shared.sd_default_config else None
|
|
|
|
if config_source == 0:
|
|
cfg = config(a) or config(b) or config(c)
|
|
elif config_source == 1:
|
|
cfg = config(b)
|
|
elif config_source == 2:
|
|
cfg = config(c)
|
|
else:
|
|
cfg = None
|
|
|
|
if cfg is None:
|
|
return
|
|
|
|
filename, _ = os.path.splitext(ckpt_result)
|
|
checkpoint_filename = filename + ".yaml"
|
|
|
|
print("Copying config:")
|
|
print(" from:", cfg)
|
|
print(" to:", checkpoint_filename)
|
|
shutil.copyfile(cfg, checkpoint_filename)
|
|
|
|
|
|
checkpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"]
|
|
|
|
|
|
def to_half(tensor, enable):
|
|
if enable and tensor.dtype == torch.float:
|
|
return tensor.half()
|
|
|
|
return tensor
|
|
|
|
|
|
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata):
|
|
shared.state.begin(job="model-merge")
|
|
|
|
def fail(message):
|
|
shared.state.textinfo = message
|
|
shared.state.end()
|
|
return [*[gr.update() for _ in range(4)], message]
|
|
|
|
def weighted_sum(theta0, theta1, alpha):
|
|
return ((1 - alpha) * theta0) + (alpha * theta1)
|
|
|
|
def get_difference(theta1, theta2):
|
|
return theta1 - theta2
|
|
|
|
def add_difference(theta0, theta1_2_diff, alpha):
|
|
return theta0 + (alpha * theta1_2_diff)
|
|
|
|
def filename_weighted_sum():
|
|
a = primary_model_info.model_name
|
|
b = secondary_model_info.model_name
|
|
Ma = round(1 - multiplier, 2)
|
|
Mb = round(multiplier, 2)
|
|
|
|
return f"{Ma}({a}) + {Mb}({b})"
|
|
|
|
def filename_add_difference():
|
|
a = primary_model_info.model_name
|
|
b = secondary_model_info.model_name
|
|
c = tertiary_model_info.model_name
|
|
M = round(multiplier, 2)
|
|
|
|
return f"{a} + {M}({b} - {c})"
|
|
|
|
def filename_nothing():
|
|
return primary_model_info.model_name
|
|
|
|
theta_funcs = {
|
|
"Weighted sum": (filename_weighted_sum, None, weighted_sum),
|
|
"Add difference": (filename_add_difference, get_difference, add_difference),
|
|
"No interpolation": (filename_nothing, None, None),
|
|
}
|
|
filename_generator, theta_func1, theta_func2 = theta_funcs[interp_method]
|
|
shared.state.job_count = (1 if theta_func1 else 0) + (1 if theta_func2 else 0)
|
|
|
|
if not primary_model_name:
|
|
return fail("Failed: Merging requires a primary model.")
|
|
|
|
primary_model_info = sd_models.checkpoints_list[primary_model_name]
|
|
|
|
if theta_func2 and not secondary_model_name:
|
|
return fail("Failed: Merging requires a secondary model.")
|
|
|
|
secondary_model_info = sd_models.checkpoints_list[secondary_model_name] if theta_func2 else None
|
|
|
|
if theta_func1 and not tertiary_model_name:
|
|
return fail(f"Failed: Interpolation method ({interp_method}) requires a tertiary model.")
|
|
|
|
tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None
|
|
|
|
result_is_inpainting_model = False
|
|
result_is_instruct_pix2pix_model = False
|
|
|
|
if theta_func2:
|
|
shared.state.textinfo = "Loading B"
|
|
print(f"Loading {secondary_model_info.filename}...")
|
|
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
|
|
else:
|
|
theta_1 = None
|
|
|
|
if theta_func1:
|
|
shared.state.textinfo = "Loading C"
|
|
print(f"Loading {tertiary_model_info.filename}...")
|
|
theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')
|
|
|
|
shared.state.textinfo = 'Merging B and C'
|
|
shared.state.sampling_steps = len(theta_1.keys())
|
|
for key in tqdm.tqdm(theta_1.keys()):
|
|
if key in checkpoint_dict_skip_on_merge:
|
|
continue
|
|
|
|
if 'model' in key:
|
|
if key in theta_2:
|
|
t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
|
|
theta_1[key] = theta_func1(theta_1[key], t2)
|
|
else:
|
|
theta_1[key] = torch.zeros_like(theta_1[key])
|
|
|
|
shared.state.sampling_step += 1
|
|
del theta_2
|
|
|
|
shared.state.nextjob()
|
|
|
|
shared.state.textinfo = f"Loading {primary_model_info.filename}..."
|
|
print(f"Loading {primary_model_info.filename}...")
|
|
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
|
|
|
|
print("Merging...")
|
|
shared.state.textinfo = 'Merging A and B'
|
|
shared.state.sampling_steps = len(theta_0.keys())
|
|
for key in tqdm.tqdm(theta_0.keys()):
|
|
if theta_1 and 'model' in key and key in theta_1:
|
|
|
|
if key in checkpoint_dict_skip_on_merge:
|
|
continue
|
|
|
|
a = theta_0[key]
|
|
b = theta_1[key]
|
|
|
|
# this enables merging an inpainting model (A) with another one (B);
|
|
# where normal model would have 4 channels, for latenst space, inpainting model would
|
|
# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
|
|
if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
|
|
if a.shape[1] == 4 and b.shape[1] == 9:
|
|
raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
|
|
if a.shape[1] == 4 and b.shape[1] == 8:
|
|
raise RuntimeError("When merging instruct-pix2pix model with a normal one, A must be the instruct-pix2pix model.")
|
|
|
|
if a.shape[1] == 8 and b.shape[1] == 4:#If we have an Instruct-Pix2Pix model...
|
|
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)#Merge only the vectors the models have in common. Otherwise we get an error due to dimension mismatch.
|
|
result_is_instruct_pix2pix_model = True
|
|
else:
|
|
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
|
|
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
|
|
result_is_inpainting_model = True
|
|
else:
|
|
theta_0[key] = theta_func2(a, b, multiplier)
|
|
|
|
theta_0[key] = to_half(theta_0[key], save_as_half)
|
|
|
|
shared.state.sampling_step += 1
|
|
|
|
del theta_1
|
|
|
|
bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None)
|
|
if bake_in_vae_filename is not None:
|
|
print(f"Baking in VAE from {bake_in_vae_filename}")
|
|
shared.state.textinfo = 'Baking in VAE'
|
|
vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu')
|
|
|
|
for key in vae_dict.keys():
|
|
theta_0_key = 'first_stage_model.' + key
|
|
if theta_0_key in theta_0:
|
|
theta_0[theta_0_key] = to_half(vae_dict[key], save_as_half)
|
|
|
|
del vae_dict
|
|
|
|
if save_as_half and not theta_func2:
|
|
for key in theta_0.keys():
|
|
theta_0[key] = to_half(theta_0[key], save_as_half)
|
|
|
|
if discard_weights:
|
|
regex = re.compile(discard_weights)
|
|
for key in list(theta_0):
|
|
if re.search(regex, key):
|
|
theta_0.pop(key, None)
|
|
|
|
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
|
|
|
|
filename = filename_generator() if custom_name == '' else custom_name
|
|
filename += ".inpainting" if result_is_inpainting_model else ""
|
|
filename += ".instruct-pix2pix" if result_is_instruct_pix2pix_model else ""
|
|
filename += "." + checkpoint_format
|
|
|
|
output_modelname = os.path.join(ckpt_dir, filename)
|
|
|
|
shared.state.nextjob()
|
|
shared.state.textinfo = "Saving"
|
|
print(f"Saving to {output_modelname}...")
|
|
|
|
metadata = None
|
|
|
|
if save_metadata:
|
|
metadata = {"format": "pt"}
|
|
|
|
merge_recipe = {
|
|
"type": "webui", # indicate this model was merged with webui's built-in merger
|
|
"primary_model_hash": primary_model_info.sha256,
|
|
"secondary_model_hash": secondary_model_info.sha256 if secondary_model_info else None,
|
|
"tertiary_model_hash": tertiary_model_info.sha256 if tertiary_model_info else None,
|
|
"interp_method": interp_method,
|
|
"multiplier": multiplier,
|
|
"save_as_half": save_as_half,
|
|
"custom_name": custom_name,
|
|
"config_source": config_source,
|
|
"bake_in_vae": bake_in_vae,
|
|
"discard_weights": discard_weights,
|
|
"is_inpainting": result_is_inpainting_model,
|
|
"is_instruct_pix2pix": result_is_instruct_pix2pix_model
|
|
}
|
|
metadata["sd_merge_recipe"] = json.dumps(merge_recipe)
|
|
|
|
sd_merge_models = {}
|
|
|
|
def add_model_metadata(checkpoint_info):
|
|
checkpoint_info.calculate_shorthash()
|
|
sd_merge_models[checkpoint_info.sha256] = {
|
|
"name": checkpoint_info.name,
|
|
"legacy_hash": checkpoint_info.hash,
|
|
"sd_merge_recipe": checkpoint_info.metadata.get("sd_merge_recipe", None)
|
|
}
|
|
|
|
sd_merge_models.update(checkpoint_info.metadata.get("sd_merge_models", {}))
|
|
|
|
add_model_metadata(primary_model_info)
|
|
if secondary_model_info:
|
|
add_model_metadata(secondary_model_info)
|
|
if tertiary_model_info:
|
|
add_model_metadata(tertiary_model_info)
|
|
|
|
metadata["sd_merge_models"] = json.dumps(sd_merge_models)
|
|
|
|
_, extension = os.path.splitext(output_modelname)
|
|
if extension.lower() == ".safetensors":
|
|
safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata)
|
|
else:
|
|
torch.save(theta_0, output_modelname)
|
|
|
|
sd_models.list_models()
|
|
created_model = next((ckpt for ckpt in sd_models.checkpoints_list.values() if ckpt.name == filename), None)
|
|
if created_model:
|
|
created_model.calculate_shorthash()
|
|
|
|
create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info)
|
|
|
|
print(f"Checkpoint saved to {output_modelname}.")
|
|
shared.state.textinfo = "Checkpoint saved"
|
|
shared.state.end()
|
|
|
|
return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], "Checkpoint saved to " + output_modelname]
|