82 lines
3.5 KiB
Python
82 lines
3.5 KiB
Python
import torch
|
|
import gradio as gr
|
|
from fastapi import FastAPI
|
|
|
|
import lora
|
|
import extra_networks_lora
|
|
import ui_extra_networks_lora
|
|
from modules import script_callbacks, ui_extra_networks, extra_networks, shared
|
|
|
|
def unload():
|
|
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
|
|
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora
|
|
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
|
|
torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora
|
|
torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora
|
|
torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora
|
|
|
|
|
|
def before_ui():
|
|
ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora())
|
|
extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora())
|
|
|
|
|
|
if not hasattr(torch.nn, 'Linear_forward_before_lora'):
|
|
torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward
|
|
|
|
if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'):
|
|
torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict
|
|
|
|
if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
|
|
torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward
|
|
|
|
if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'):
|
|
torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict
|
|
|
|
if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'):
|
|
torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward
|
|
|
|
if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'):
|
|
torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict
|
|
|
|
torch.nn.Linear.forward = lora.lora_Linear_forward
|
|
torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict
|
|
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
|
|
torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict
|
|
torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward
|
|
torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict
|
|
|
|
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
|
|
script_callbacks.on_script_unloaded(unload)
|
|
script_callbacks.on_before_ui(before_ui)
|
|
script_callbacks.on_infotext_pasted(lora.infotext_pasted)
|
|
|
|
|
|
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
|
|
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
|
|
}))
|
|
|
|
|
|
shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), {
|
|
"lora_functional": shared.OptionInfo(False, "Lora: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"),
|
|
}))
|
|
|
|
|
|
def create_lora_json(obj: lora.LoraOnDisk):
|
|
return {
|
|
"name": obj.name,
|
|
"alias": obj.alias,
|
|
"path": obj.filename,
|
|
"metadata": obj.metadata,
|
|
}
|
|
|
|
|
|
def api_loras(_: gr.Blocks, app: FastAPI):
|
|
@app.get("/sdapi/v1/loras")
|
|
async def get_loras():
|
|
return [create_lora_json(obj) for obj in lora.available_loras.values()]
|
|
|
|
|
|
script_callbacks.on_app_started(api_loras)
|
|
|