34 lines
1.0 KiB
Python
34 lines
1.0 KiB
Python
|
from PIL import Image
|
||
|
import numpy as np
|
||
|
|
||
|
from modules import scripts_postprocessing, gfpgan_model
|
||
|
import gradio as gr
|
||
|
|
||
|
from modules.ui_components import FormRow
|
||
|
|
||
|
|
||
|
class ScriptPostprocessingGfpGan(scripts_postprocessing.ScriptPostprocessing):
|
||
|
name = "GFPGAN"
|
||
|
order = 2000
|
||
|
|
||
|
def ui(self):
|
||
|
with FormRow():
|
||
|
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, elem_id="extras_gfpgan_visibility")
|
||
|
|
||
|
return {
|
||
|
"gfpgan_visibility": gfpgan_visibility,
|
||
|
}
|
||
|
|
||
|
def process(self, pp: scripts_postprocessing.PostprocessedImage, gfpgan_visibility):
|
||
|
if gfpgan_visibility == 0:
|
||
|
return
|
||
|
|
||
|
restored_img = gfpgan_model.gfpgan_fix_faces(np.array(pp.image, dtype=np.uint8))
|
||
|
res = Image.fromarray(restored_img)
|
||
|
|
||
|
if gfpgan_visibility < 1.0:
|
||
|
res = Image.blend(pp.image, res, gfpgan_visibility)
|
||
|
|
||
|
pp.image = res
|
||
|
pp.info["GFPGAN visibility"] = round(gfpgan_visibility, 3)
|