make the program read Eta and Eta DDIM from generation parameters
This commit is contained in:
parent
4df63d2d19
commit
040ec7a80e
@ -293,6 +293,8 @@ infotext_to_setting_name_mapping = [
|
|||||||
('Model hash', 'sd_model_checkpoint'),
|
('Model hash', 'sd_model_checkpoint'),
|
||||||
('ENSD', 'eta_noise_seed_delta'),
|
('ENSD', 'eta_noise_seed_delta'),
|
||||||
('Noise multiplier', 'initial_noise_multiplier'),
|
('Noise multiplier', 'initial_noise_multiplier'),
|
||||||
|
('Eta', 'eta_ancestral'),
|
||||||
|
('Eta DDIM', 'eta_ddim'),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@ -455,7 +455,6 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
|||||||
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
||||||
"Denoising strength": getattr(p, 'denoising_strength', None),
|
"Denoising strength": getattr(p, 'denoising_strength', None),
|
||||||
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
|
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
|
||||||
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
|
|
||||||
"Clip skip": None if clip_skip <= 1 else clip_skip,
|
"Clip skip": None if clip_skip <= 1 else clip_skip,
|
||||||
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
|
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
|
||||||
}
|
}
|
||||||
|
@ -27,7 +27,6 @@ class VanillaStableDiffusionSampler:
|
|||||||
self.step = 0
|
self.step = 0
|
||||||
self.stop_at = None
|
self.stop_at = None
|
||||||
self.eta = None
|
self.eta = None
|
||||||
self.default_eta = 0.0
|
|
||||||
self.config = None
|
self.config = None
|
||||||
self.last_latent = None
|
self.last_latent = None
|
||||||
|
|
||||||
@ -102,6 +101,8 @@ class VanillaStableDiffusionSampler:
|
|||||||
|
|
||||||
def initialize(self, p):
|
def initialize(self, p):
|
||||||
self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim
|
self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim
|
||||||
|
if self.eta != 0.0:
|
||||||
|
p.extra_generation_params["Eta DDIM"] = self.eta
|
||||||
|
|
||||||
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
|
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
|
||||||
if hasattr(self.sampler, fieldname):
|
if hasattr(self.sampler, fieldname):
|
||||||
|
@ -2,7 +2,7 @@ from collections import deque
|
|||||||
import torch
|
import torch
|
||||||
import inspect
|
import inspect
|
||||||
import k_diffusion.sampling
|
import k_diffusion.sampling
|
||||||
from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_compvis
|
from modules import prompt_parser, devices, sd_samplers_common
|
||||||
|
|
||||||
from modules.shared import opts, state
|
from modules.shared import opts, state
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
@ -164,7 +164,6 @@ class KDiffusionSampler:
|
|||||||
self.sampler_noises = None
|
self.sampler_noises = None
|
||||||
self.stop_at = None
|
self.stop_at = None
|
||||||
self.eta = None
|
self.eta = None
|
||||||
self.default_eta = 1.0
|
|
||||||
self.config = None
|
self.config = None
|
||||||
self.last_latent = None
|
self.last_latent = None
|
||||||
|
|
||||||
@ -199,7 +198,7 @@ class KDiffusionSampler:
|
|||||||
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
|
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
|
||||||
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
|
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
|
||||||
self.model_wrap_cfg.step = 0
|
self.model_wrap_cfg.step = 0
|
||||||
self.eta = p.eta or opts.eta_ancestral
|
self.eta = p.eta if p.eta is not None else opts.eta_ancestral
|
||||||
|
|
||||||
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
|
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
|
||||||
|
|
||||||
@ -209,6 +208,9 @@ class KDiffusionSampler:
|
|||||||
extra_params_kwargs[param_name] = getattr(p, param_name)
|
extra_params_kwargs[param_name] = getattr(p, param_name)
|
||||||
|
|
||||||
if 'eta' in inspect.signature(self.func).parameters:
|
if 'eta' in inspect.signature(self.func).parameters:
|
||||||
|
if self.eta != 1.0:
|
||||||
|
p.extra_generation_params["Eta"] = self.eta
|
||||||
|
|
||||||
extra_params_kwargs['eta'] = self.eta
|
extra_params_kwargs['eta'] = self.eta
|
||||||
|
|
||||||
return extra_params_kwargs
|
return extra_params_kwargs
|
||||||
|
Loading…
Reference in New Issue
Block a user