diff --git a/configs/instruct-pix2pix.yaml b/configs/instruct-pix2pix.yaml new file mode 100644 index 00000000..437ddcef --- /dev/null +++ b/configs/instruct-pix2pix.yaml @@ -0,0 +1,99 @@ +# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion). +# See more details in LICENSE. + +model: + base_learning_rate: 1.0e-04 + target: modules.models.diffusion.ddpm_edit.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: edited + cond_stage_key: edit + # image_size: 64 + # image_size: 32 + image_size: 16 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: hybrid + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: true + load_ema: true + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 0 ] + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + image_size: 32 # unused + in_channels: 8 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder + +data: + target: main.DataModuleFromConfig + params: + batch_size: 128 + num_workers: 1 + wrap: false + validation: + target: edit_dataset.EditDataset + params: + path: data/clip-filtered-dataset + cache_dir: data/ + cache_name: data_10k + split: val + min_text_sim: 0.2 + min_image_sim: 0.75 + min_direction_sim: 0.2 + max_samples_per_prompt: 1 + min_resize_res: 512 + max_resize_res: 512 + crop_res: 512 + output_as_edit: False + real_input: True diff --git a/v2-inference-v.yaml b/configs/v1-inpainting-inference.yaml similarity index 61% rename from v2-inference-v.yaml rename to configs/v1-inpainting-inference.yaml index 513cd635..f9eec37d 100644 --- a/v2-inference-v.yaml +++ b/configs/v1-inpainting-inference.yaml @@ -1,8 +1,7 @@ model: - base_learning_rate: 1.0e-4 - target: ldm.models.diffusion.ddpm.LatentDiffusion + base_learning_rate: 7.5e-05 + target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion params: - parameterization: "v" linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 @@ -12,29 +11,36 @@ model: cond_stage_key: "txt" image_size: 64 channels: 4 - cond_stage_trainable: false - conditioning_key: crossattn + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: hybrid # important monitor: val/loss_simple_ema scale_factor: 0.18215 - use_ema: False # we set this to false because this is an inference only config + finetune_keys: null + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] unet_config: target: ldm.modules.diffusionmodules.openaimodel.UNetModel params: - use_checkpoint: True - use_fp16: True image_size: 32 # unused - in_channels: 4 + in_channels: 9 # 4 data + 4 downscaled image + 1 mask out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] - num_head_channels: 64 # need to fix for flash-attn + num_heads: 8 use_spatial_transformer: True - use_linear_in_transformer: True transformer_depth: 1 - context_dim: 1024 + context_dim: 768 + use_checkpoint: True legacy: False first_stage_config: @@ -43,7 +49,6 @@ model: embed_dim: 4 monitor: val/rec_loss ddconfig: - #attn_type: "vanilla-xformers" double_z: true z_channels: 4 resolution: 256 @@ -62,7 +67,4 @@ model: target: torch.nn.Identity cond_stage_config: - target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder - params: - freeze: True - layer: "penultimate" \ No newline at end of file + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder diff --git a/modules/api/api.py b/modules/api/api.py index 25c65e57..eb7b1da5 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -18,7 +18,8 @@ from modules.textual_inversion.textual_inversion import create_embedding, train_ from modules.textual_inversion.preprocess import preprocess from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork from PIL import PngImagePlugin,Image -from modules.sd_models import checkpoints_list, find_checkpoint_config +from modules.sd_models import checkpoints_list +from modules.sd_models_config import find_checkpoint_config_near_filename from modules.realesrgan_model import get_realesrgan_models from modules import devices from typing import List @@ -387,7 +388,7 @@ class Api: ] def get_sd_models(self): - return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()] + return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()] def get_hypernetworks(self): return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks] diff --git a/modules/api/models.py b/modules/api/models.py index 805bd8f7..cba43d3b 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -228,7 +228,7 @@ class SDModelItem(BaseModel): hash: Optional[str] = Field(title="Short hash") sha256: Optional[str] = Field(title="sha256 hash") filename: str = Field(title="Filename") - config: str = Field(title="Config file") + config: Optional[str] = Field(title="Config file") class HypernetworkItem(BaseModel): name: str = Field(title="Name") diff --git a/modules/devices.py b/modules/devices.py index 6b36622c..4687944e 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -34,14 +34,18 @@ def get_cuda_device_string(): return "cuda" -def get_optimal_device(): +def get_optimal_device_name(): if torch.cuda.is_available(): - return torch.device(get_cuda_device_string()) + return get_cuda_device_string() if has_mps(): - return torch.device("mps") + return "mps" - return cpu + return "cpu" + + +def get_optimal_device(): + return torch.device(get_optimal_device_name()) def get_device_for(task): @@ -139,6 +143,8 @@ def test_for_nans(x, where): else: message = "A tensor with all NaNs was produced." + message += " Use --disable-nan-check commandline argument to disable this check." + raise NansException(message) diff --git a/modules/processing.py b/modules/processing.py index 9e5a2f38..262806a1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -13,7 +13,7 @@ from skimage import exposure from typing import Any, Dict, List, Optional import modules.sd_hijack -from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks, sd_vae_approx +from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks, sd_vae_approx, scripts from modules.sd_hijack import model_hijack from modules.shared import opts, cmd_opts, state import modules.shared as shared @@ -172,7 +172,7 @@ class StableDiffusionProcessing: midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device) midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size) - conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image.to(devices.dtype_unet) if devices.unet_needs_upcast else source_image)) + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image.to(devices.dtype_vae) if devices.unet_needs_upcast else source_image)) conditioning_image = conditioning_image.float() if devices.unet_needs_upcast else conditioning_image conditioning = torch.nn.functional.interpolate( self.sd_model.depth_model(midas_in), @@ -185,7 +185,12 @@ class StableDiffusionProcessing: conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1. return conditioning - def inpainting_image_conditioning(self, source_image, latent_image, image_mask = None): + def edit_image_conditioning(self, source_image): + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image)) + + return conditioning_image + + def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None): self.is_using_inpainting_conditioning = True # Handle the different mask inputs @@ -212,7 +217,7 @@ class StableDiffusionProcessing: ) # Encode the new masked image using first stage of network. - conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image.to(devices.dtype_unet) if devices.unet_needs_upcast else conditioning_image)) + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image.to(devices.dtype_vae) if devices.unet_needs_upcast else conditioning_image)) # Create the concatenated conditioning tensor to be fed to `c_concat` conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:]) @@ -228,6 +233,9 @@ class StableDiffusionProcessing: if isinstance(self.sd_model, LatentDepth2ImageDiffusion): return self.depth2img_image_conditioning(source_image.float() if devices.unet_needs_upcast else source_image) + if self.sd_model.cond_stage_key == "edit": + return self.edit_image_conditioning(source_image) + if self.sampler.conditioning_key in {'hybrid', 'concat'}: return self.inpainting_image_conditioning(source_image.float() if devices.unet_needs_upcast else source_image, latent_image, image_mask=image_mask) @@ -409,7 +417,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see def decode_first_stage(model, x): with devices.autocast(disable=x.dtype == devices.dtype_vae): - x = model.decode_first_stage(x) + x = model.decode_first_stage(x.to(devices.dtype_vae) if devices.unet_needs_upcast else x) return x @@ -650,6 +658,11 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: image = Image.fromarray(x_sample) + if p.scripts is not None: + pp = scripts.PostprocessImageArgs(image) + p.scripts.postprocess_image(p, pp) + image = pp.image + if p.color_corrections is not None and i < len(p.color_corrections): if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction: image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images) @@ -993,7 +1006,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): image = torch.from_numpy(batch_images) image = 2. * image - 1. - image = image.to(device=shared.device, dtype=devices.dtype_unet if devices.unet_needs_upcast else None) + image = image.to(device=shared.device, dtype=devices.dtype_vae if devices.unet_needs_upcast else None) self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image)) diff --git a/modules/scripts.py b/modules/scripts.py index 03907a63..6e9dc0c0 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -6,12 +6,16 @@ from collections import namedtuple import gradio as gr -from modules.processing import StableDiffusionProcessing from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing AlwaysVisible = object() +class PostprocessImageArgs: + def __init__(self, image): + self.image = image + + class Script: filename = None args_from = None @@ -65,7 +69,7 @@ class Script: args contains all values returned by components from ui() """ - raise NotImplementedError() + pass def process(self, p, *args): """ @@ -100,6 +104,13 @@ class Script: pass + def postprocess_image(self, p, pp: PostprocessImageArgs, *args): + """ + Called for every image after it has been generated. + """ + + pass + def postprocess(self, p, processed, *args): """ This function is called after processing ends for AlwaysVisible scripts. @@ -247,11 +258,15 @@ class ScriptRunner: self.infotext_fields = [] def initialize_scripts(self, is_img2img): + from modules import scripts_auto_postprocessing + self.scripts.clear() self.alwayson_scripts.clear() self.selectable_scripts.clear() - for script_class, path, basedir, script_module in scripts_data: + auto_processing_scripts = scripts_auto_postprocessing.create_auto_preprocessing_script_data() + + for script_class, path, basedir, script_module in auto_processing_scripts + scripts_data: script = script_class() script.filename = path script.is_txt2img = not is_img2img @@ -332,7 +347,7 @@ class ScriptRunner: return inputs - def run(self, p: StableDiffusionProcessing, *args): + def run(self, p, *args): script_index = args[0] if script_index == 0: @@ -386,6 +401,15 @@ class ScriptRunner: print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) + def postprocess_image(self, p, pp: PostprocessImageArgs): + for script in self.alwayson_scripts: + try: + script_args = p.script_args[script.args_from:script.args_to] + script.postprocess_image(p, pp, *script_args) + except Exception: + print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + def before_component(self, component, **kwargs): for script in self.scripts: try: diff --git a/modules/scripts_auto_postprocessing.py b/modules/scripts_auto_postprocessing.py new file mode 100644 index 00000000..30d6d658 --- /dev/null +++ b/modules/scripts_auto_postprocessing.py @@ -0,0 +1,42 @@ +from modules import scripts, scripts_postprocessing, shared + + +class ScriptPostprocessingForMainUI(scripts.Script): + def __init__(self, script_postproc): + self.script: scripts_postprocessing.ScriptPostprocessing = script_postproc + self.postprocessing_controls = None + + def title(self): + return self.script.name + + def show(self, is_img2img): + return scripts.AlwaysVisible + + def ui(self, is_img2img): + self.postprocessing_controls = self.script.ui() + return self.postprocessing_controls.values() + + def postprocess_image(self, p, script_pp, *args): + args_dict = {k: v for k, v in zip(self.postprocessing_controls, args)} + + pp = scripts_postprocessing.PostprocessedImage(script_pp.image) + pp.info = {} + self.script.process(pp, **args_dict) + p.extra_generation_params.update(pp.info) + script_pp.image = pp.image + + +def create_auto_preprocessing_script_data(): + from modules import scripts + + res = [] + + for name in shared.opts.postprocessing_enable_in_main_ui: + script = next(iter([x for x in scripts.postprocessing_scripts_data if x.script_class.name == name]), None) + if script is None: + continue + + constructor = lambda s=script: ScriptPostprocessingForMainUI(s.script_class()) + res.append(scripts.ScriptClassData(script_class=constructor, path=script.path, basedir=script.basedir, module=script.module)) + + return res diff --git a/modules/scripts_postprocessing.py b/modules/scripts_postprocessing.py index 25de02d0..ce0ebb61 100644 --- a/modules/scripts_postprocessing.py +++ b/modules/scripts_postprocessing.py @@ -46,6 +46,8 @@ class ScriptPostprocessing: pass + + def wrap_call(func, filename, funcname, *args, default=None, **kwargs): try: res = func(*args, **kwargs) @@ -68,6 +70,9 @@ class ScriptPostprocessingRunner: script: ScriptPostprocessing = script_class() script.filename = path + if script.name == "Simple Upscale": + continue + self.scripts.append(script) def create_script_ui(self, script, inputs): @@ -87,12 +92,11 @@ class ScriptPostprocessingRunner: import modules.scripts self.initialize_scripts(modules.scripts.postprocessing_scripts_data) - scripts_order = [x.lower().strip() for x in shared.opts.postprocessing_scipts_order.split(",")] + scripts_order = shared.opts.postprocessing_operation_order def script_score(name): - name = name.lower() for i, possible_match in enumerate(scripts_order): - if possible_match in name: + if possible_match == name: return i return len(self.scripts) @@ -145,3 +149,4 @@ class ScriptPostprocessingRunner: def image_changed(self): for script in self.scripts_in_preferred_order(): script.image_changed() + diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 31d2c898..478cd499 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -96,15 +96,6 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F return x_prev, pred_x0, e_t -def should_hijack_inpainting(checkpoint_info): - from modules import sd_models - - ckpt_basename = os.path.basename(checkpoint_info.filename).lower() - cfg_basename = os.path.basename(sd_models.find_checkpoint_config(checkpoint_info)).lower() - - return "inpainting" in ckpt_basename and not "inpainting" in cfg_basename - - def do_inpainting_hijack(): # p_sample_plms is needed because PLMS can't work with dicts as conditionings diff --git a/modules/sd_hijack_utils.py b/modules/sd_hijack_utils.py index f81b169a..f8684475 100644 --- a/modules/sd_hijack_utils.py +++ b/modules/sd_hijack_utils.py @@ -5,7 +5,7 @@ class CondFunc: self = super(CondFunc, cls).__new__(cls) if isinstance(orig_func, str): func_path = orig_func.split('.') - for i in range(len(func_path)-2, -1, -1): + for i in range(len(func_path)-1, -1, -1): try: resolved_obj = importlib.import_module('.'.join(func_path[:i])) break diff --git a/modules/sd_models.py b/modules/sd_models.py index 7072eb2e..37dad18d 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -2,8 +2,6 @@ import collections import os.path import sys import gc -import time -from collections import namedtuple import torch import re import safetensors.torch @@ -14,10 +12,10 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config -from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes +from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config from modules.paths import models_path -from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting -from modules.sd_hijack_ip2p import should_hijack_ip2p +from modules.sd_hijack_inpainting import do_inpainting_hijack +from modules.timer import Timer model_dir = "Stable-diffusion" model_path = os.path.abspath(os.path.join(models_path, model_dir)) @@ -99,17 +97,6 @@ def checkpoint_tiles(): return sorted([x.title for x in checkpoints_list.values()], key=alphanumeric_key) -def find_checkpoint_config(info): - if info is None: - return shared.cmd_opts.config - - config = os.path.splitext(info.filename)[0] + ".yaml" - if os.path.exists(config): - return config - - return shared.cmd_opts.config - - def list_models(): checkpoints_list.clear() checkpoint_alisases.clear() @@ -215,9 +202,7 @@ def get_state_dict_from_checkpoint(pl_sd): def read_state_dict(checkpoint_file, print_global_state=False, map_location=None): _, extension = os.path.splitext(checkpoint_file) if extension.lower() == ".safetensors": - device = map_location or shared.weight_load_location - if device is None: - device = devices.get_cuda_device_string() if torch.cuda.is_available() else "cpu" + device = map_location or shared.weight_load_location or devices.get_optimal_device_name() pl_sd = safetensors.torch.load_file(checkpoint_file, device=device) else: pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location) @@ -229,60 +214,74 @@ def read_state_dict(checkpoint_file, print_global_state=False, map_location=None return sd -def load_model_weights(model, checkpoint_info: CheckpointInfo): +def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer): + sd_model_hash = checkpoint_info.calculate_shorthash() + timer.record("calculate hash") + + if checkpoint_info in checkpoints_loaded: + # use checkpoint cache + print(f"Loading weights [{sd_model_hash}] from cache") + return checkpoints_loaded[checkpoint_info] + + print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}") + res = read_state_dict(checkpoint_info.filename) + timer.record("load weights from disk") + + return res + + +def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer): title = checkpoint_info.title sd_model_hash = checkpoint_info.calculate_shorthash() + timer.record("calculate hash") + if checkpoint_info.title != title: shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title - cache_enabled = shared.opts.sd_checkpoint_cache > 0 + if state_dict is None: + state_dict = get_checkpoint_state_dict(checkpoint_info, timer) - if cache_enabled and checkpoint_info in checkpoints_loaded: - # use checkpoint cache - print(f"Loading weights [{sd_model_hash}] from cache") - model.load_state_dict(checkpoints_loaded[checkpoint_info]) - else: - # load from file - print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}") + model.load_state_dict(state_dict, strict=False) + del state_dict + timer.record("apply weights to model") - sd = read_state_dict(checkpoint_info.filename) - model.load_state_dict(sd, strict=False) - del sd - - if cache_enabled: - # cache newly loaded model - checkpoints_loaded[checkpoint_info] = model.state_dict().copy() + if shared.opts.sd_checkpoint_cache > 0: + # cache newly loaded model + checkpoints_loaded[checkpoint_info] = model.state_dict().copy() - if shared.cmd_opts.opt_channelslast: - model.to(memory_format=torch.channels_last) + if shared.cmd_opts.opt_channelslast: + model.to(memory_format=torch.channels_last) + timer.record("apply channels_last") - if not shared.cmd_opts.no_half: - vae = model.first_stage_model - depth_model = getattr(model, 'depth_model', None) + if not shared.cmd_opts.no_half: + vae = model.first_stage_model + depth_model = getattr(model, 'depth_model', None) - # with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16 - if shared.cmd_opts.no_half_vae: - model.first_stage_model = None - # with --upcast-sampling, don't convert the depth model weights to float16 - if shared.cmd_opts.upcast_sampling and depth_model: - model.depth_model = None + # with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16 + if shared.cmd_opts.no_half_vae: + model.first_stage_model = None + # with --upcast-sampling, don't convert the depth model weights to float16 + if shared.cmd_opts.upcast_sampling and depth_model: + model.depth_model = None - model.half() - model.first_stage_model = vae - if depth_model: - model.depth_model = depth_model + model.half() + model.first_stage_model = vae + if depth_model: + model.depth_model = depth_model - devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 - devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 - devices.dtype_unet = model.model.diffusion_model.dtype - devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16 + timer.record("apply half()") - model.first_stage_model.to(devices.dtype_vae) + devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 + devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 + devices.dtype_unet = model.model.diffusion_model.dtype + devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16 + + model.first_stage_model.to(devices.dtype_vae) + timer.record("apply dtype to VAE") # clean up cache if limit is reached - if cache_enabled: - while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model - checkpoints_loaded.popitem(last=False) # LRU + while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: + checkpoints_loaded.popitem(last=False) model.sd_model_hash = sd_model_hash model.sd_model_checkpoint = checkpoint_info.filename @@ -295,6 +294,7 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo): sd_vae.clear_loaded_vae() vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename) sd_vae.load_vae(model, vae_file, vae_source) + timer.record("load VAE") def enable_midas_autodownload(): @@ -340,24 +340,20 @@ def enable_midas_autodownload(): midas.api.load_model = load_model_wrapper -class Timer: - def __init__(self): - self.start = time.time() +def repair_config(sd_config): - def elapsed(self): - end = time.time() - res = end - self.start - self.start = end - return res + if not hasattr(sd_config.model.params, "use_ema"): + sd_config.model.params.use_ema = False + + if shared.cmd_opts.no_half: + sd_config.model.params.unet_config.params.use_fp16 = False + elif shared.cmd_opts.upcast_sampling: + sd_config.model.params.unet_config.params.use_fp16 = True -def load_model(checkpoint_info=None): +def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_to_load_state_dict=None): from modules import lowvram, sd_hijack checkpoint_info = checkpoint_info or select_checkpoint() - checkpoint_config = find_checkpoint_config(checkpoint_info) - - if checkpoint_config != shared.cmd_opts.config: - print(f"Loading config from: {checkpoint_config}") if shared.sd_model: sd_hijack.model_hijack.undo_hijack(shared.sd_model) @@ -365,38 +361,27 @@ def load_model(checkpoint_info=None): gc.collect() devices.torch_gc() - sd_config = OmegaConf.load(checkpoint_config) - - if should_hijack_inpainting(checkpoint_info): - # Hardcoded config for now... - sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion" - sd_config.model.params.conditioning_key = "hybrid" - sd_config.model.params.unet_config.params.in_channels = 9 - sd_config.model.params.finetune_keys = None - - if should_hijack_ip2p(checkpoint_info): - sd_config.model.target = "modules.models.diffusion.ddpm_edit.LatentDiffusion" - sd_config.model.params.conditioning_key = "hybrid" - sd_config.model.params.first_stage_key = "edited" - sd_config.model.params.cond_stage_key = "edit" - sd_config.model.params.image_size = 16 - sd_config.model.params.unet_config.params.in_channels = 8 - sd_config.model.params.unet_config.params.out_channels = 4 - - if not hasattr(sd_config.model.params, "use_ema"): - sd_config.model.params.use_ema = False - do_inpainting_hijack() - if shared.cmd_opts.no_half: - sd_config.model.params.unet_config.params.use_fp16 = False - elif shared.cmd_opts.upcast_sampling: - sd_config.model.params.unet_config.params.use_fp16 = True - timer = Timer() - sd_model = None + if already_loaded_state_dict is not None: + state_dict = already_loaded_state_dict + else: + state_dict = get_checkpoint_state_dict(checkpoint_info, timer) + checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info) + + timer.record("find config") + + sd_config = OmegaConf.load(checkpoint_config) + repair_config(sd_config) + + timer.record("load config") + + print(f"Creating model from config: {checkpoint_config}") + + sd_model = None try: with sd_disable_initialization.DisableInitialization(): sd_model = instantiate_from_config(sd_config.model) @@ -407,29 +392,35 @@ def load_model(checkpoint_info=None): print('Failed to create model quickly; will retry using slow method.', file=sys.stderr) sd_model = instantiate_from_config(sd_config.model) - elapsed_create = timer.elapsed() + sd_model.used_config = checkpoint_config - load_model_weights(sd_model, checkpoint_info) + timer.record("create model") - elapsed_load_weights = timer.elapsed() + load_model_weights(sd_model, checkpoint_info, state_dict, timer) if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) else: sd_model.to(shared.device) + timer.record("move model to device") + sd_hijack.model_hijack.hijack(sd_model) + timer.record("hijack") + sd_model.eval() shared.sd_model = sd_model sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model + timer.record("load textual inversion embeddings") + script_callbacks.model_loaded_callback(sd_model) - elapsed_the_rest = timer.elapsed() + timer.record("scripts callbacks") - print(f"Model loaded in {elapsed_create + elapsed_load_weights + elapsed_the_rest:.1f}s ({elapsed_create:.1f}s create model, {elapsed_load_weights:.1f}s load weights).") + print(f"Model loaded in {timer.summary()}.") return sd_model @@ -440,6 +431,7 @@ def reload_model_weights(sd_model=None, info=None): if not sd_model: sd_model = shared.sd_model + if sd_model is None: # previous model load failed current_checkpoint_info = None else: @@ -447,38 +439,44 @@ def reload_model_weights(sd_model=None, info=None): if sd_model.sd_model_checkpoint == checkpoint_info.filename: return - checkpoint_config = find_checkpoint_config(current_checkpoint_info) + if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: + lowvram.send_everything_to_cpu() + else: + sd_model.to(devices.cpu) - if current_checkpoint_info is None or checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info) or should_hijack_ip2p(checkpoint_info) != should_hijack_ip2p(sd_model.sd_checkpoint_info): - del sd_model - checkpoints_loaded.clear() - load_model(checkpoint_info) - return shared.sd_model - - if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: - lowvram.send_everything_to_cpu() - else: - sd_model.to(devices.cpu) - - sd_hijack.model_hijack.undo_hijack(sd_model) + sd_hijack.model_hijack.undo_hijack(sd_model) timer = Timer() + state_dict = get_checkpoint_state_dict(checkpoint_info, timer) + + checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info) + + timer.record("find config") + + if sd_model is None or checkpoint_config != sd_model.used_config: + del sd_model + checkpoints_loaded.clear() + load_model(checkpoint_info, already_loaded_state_dict=state_dict, time_taken_to_load_state_dict=timer.records["load weights from disk"]) + return shared.sd_model + try: - load_model_weights(sd_model, checkpoint_info) + load_model_weights(sd_model, checkpoint_info, state_dict, timer) except Exception as e: print("Failed to load checkpoint, restoring previous") - load_model_weights(sd_model, current_checkpoint_info) + load_model_weights(sd_model, current_checkpoint_info, None, timer) raise finally: sd_hijack.model_hijack.hijack(sd_model) + timer.record("hijack") + script_callbacks.model_loaded_callback(sd_model) + timer.record("script callbacks") if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: sd_model.to(devices.device) + timer.record("move model to device") - elapsed = timer.elapsed() - - print(f"Weights loaded in {elapsed:.1f}s.") + print(f"Weights loaded in {timer.summary()}.") return sd_model diff --git a/modules/sd_models_config.py b/modules/sd_models_config.py new file mode 100644 index 00000000..4d1e92e1 --- /dev/null +++ b/modules/sd_models_config.py @@ -0,0 +1,68 @@ +import re +import os + +from modules import shared, paths + +sd_configs_path = shared.sd_configs_path +sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion") + + +config_default = shared.sd_default_config +config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml") +config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml") +config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml") +config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml") +config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml") +config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml") + +re_parametrization_v = re.compile(r'-v\b') + + +def guess_model_config_from_state_dict(sd, filename): + fn = os.path.basename(filename) + + sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None) + diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None) + + if sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None: + return config_depth_model + + if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024: + if re.search(re_parametrization_v, fn) or "v2-1_768" in fn: + return config_sd2v + else: + return config_sd2 + + if diffusion_model_input is not None: + if diffusion_model_input.shape[1] == 9: + return config_inpainting + if diffusion_model_input.shape[1] == 8: + return config_instruct_pix2pix + + if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None: + return config_alt_diffusion + + return config_default + + +def find_checkpoint_config(state_dict, info): + if info is None: + return guess_model_config_from_state_dict(state_dict, "") + + config = find_checkpoint_config_near_filename(info) + if config is not None: + return config + + return guess_model_config_from_state_dict(state_dict, info.filename) + + +def find_checkpoint_config_near_filename(info): + if info is None: + return None + + config = os.path.splitext(info.filename)[0] + ".yaml" + if os.path.exists(config): + return config + + return None + diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 6261d1f7..a7910b56 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -454,7 +454,7 @@ class KDiffusionSampler: def initialize(self, p): self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None - self.model_wrap.step = 0 + self.model_wrap_cfg.step = 0 self.eta = p.eta or opts.eta_ancestral k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else []) diff --git a/modules/shared.py b/modules/shared.py index 6a0b96cb..14be993d 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -13,13 +13,14 @@ import modules.interrogate import modules.memmon import modules.styles import modules.devices as devices -from modules import localization, sd_vae, extensions, script_loading, errors, ui_components -from modules.paths import models_path, script_path, sd_path +from modules import localization, extensions, script_loading, errors, ui_components, shared_items +from modules.paths import models_path, script_path demo = None -sd_default_config = os.path.join(script_path, "configs/v1-inference.yaml") +sd_configs_path = os.path.join(script_path, "configs") +sd_default_config = os.path.join(sd_configs_path, "v1-inference.yaml") sd_model_file = os.path.join(script_path, 'model.ckpt') default_sd_model_file = sd_model_file @@ -264,12 +265,6 @@ interrogator = modules.interrogate.InterrogateModels("interrogate") face_restorers = [] - -def realesrgan_models_names(): - import modules.realesrgan_model - return [x.name for x in modules.realesrgan_model.get_realesrgan_models(None)] - - class OptionInfo: def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None): self.default = default @@ -360,7 +355,7 @@ options_templates.update(options_section(('saving-to-dirs', "Saving to a directo options_templates.update(options_section(('upscaling', "Upscaling"), { "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}), "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), - "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}), + "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}), "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}), })) @@ -397,7 +392,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints), "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), - "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": ["Automatic", "None"] + list(sd_vae.vae_dict)}, refresh=sd_vae.refresh_vae_list), + "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list), "sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}), @@ -483,7 +478,8 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" })) options_templates.update(options_section(('postprocessing', "Postprocessing"), { - 'postprocessing_scipts_order': OptionInfo("upscale, gfpgan, codeformer", "Postprocessing operation order"), + 'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}), + 'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}), 'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), })) diff --git a/modules/shared_items.py b/modules/shared_items.py new file mode 100644 index 00000000..8b5ec96d --- /dev/null +++ b/modules/shared_items.py @@ -0,0 +1,23 @@ + + +def realesrgan_models_names(): + import modules.realesrgan_model + return [x.name for x in modules.realesrgan_model.get_realesrgan_models(None)] + + +def postprocessing_scripts(): + import modules.scripts + + return modules.scripts.scripts_postproc.scripts + + +def sd_vae_items(): + import modules.sd_vae + + return ["Automatic", "None"] + list(modules.sd_vae.vae_dict) + + +def refresh_vae_list(): + import modules.sd_vae + + return modules.sd_vae.refresh_vae_list diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 4e90f690..6cf00e65 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -194,7 +194,7 @@ class EmbeddingDatabase: if not os.path.isdir(embdir.path): return - for root, dirs, fns in os.walk(embdir.path): + for root, dirs, fns in os.walk(embdir.path, followlinks=True): for fn in fns: try: fullfn = os.path.join(root, fn) diff --git a/modules/timer.py b/modules/timer.py new file mode 100644 index 00000000..57a4f17a --- /dev/null +++ b/modules/timer.py @@ -0,0 +1,35 @@ +import time + + +class Timer: + def __init__(self): + self.start = time.time() + self.records = {} + self.total = 0 + + def elapsed(self): + end = time.time() + res = end - self.start + self.start = end + return res + + def record(self, category, extra_time=0): + e = self.elapsed() + if category not in self.records: + self.records[category] = 0 + + self.records[category] += e + extra_time + self.total += e + extra_time + + def summary(self): + res = f"{self.total:.1f}s" + + additions = [x for x in self.records.items() if x[1] >= 0.1] + if not additions: + return res + + res += " (" + res += ", ".join([f"{category}: {time_taken:.1f}s" for category, time_taken in additions]) + res += ")" + + return res diff --git a/modules/ui_components.py b/modules/ui_components.py index 9aec3097..284ca0cf 100644 --- a/modules/ui_components.py +++ b/modules/ui_components.py @@ -48,3 +48,11 @@ class FormColorPicker(gr.ColorPicker, gr.components.FormComponent): def get_block_name(self): return "colorpicker" + +class DropdownMulti(gr.Dropdown): + """Same as gr.Dropdown but always multiselect""" + def __init__(self, **kwargs): + super().__init__(multiselect=True, **kwargs) + + def get_block_name(self): + return "dropdown" diff --git a/scripts/postprocessing_upscale.py b/scripts/postprocessing_upscale.py index 095d29b2..8842bd91 100644 --- a/scripts/postprocessing_upscale.py +++ b/scripts/postprocessing_upscale.py @@ -104,3 +104,28 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing): def image_changed(self): upscale_cache.clear() + + +class ScriptPostprocessingUpscaleSimple(ScriptPostprocessingUpscale): + name = "Simple Upscale" + order = 900 + + def ui(self): + with FormRow(): + upscaler_name = gr.Dropdown(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name) + upscale_by = gr.Slider(minimum=0.05, maximum=8.0, step=0.05, label="Upscale by", value=2) + + return { + "upscale_by": upscale_by, + "upscaler_name": upscaler_name, + } + + def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_by=2.0, upscaler_name=None): + if upscaler_name is None or upscaler_name == "None": + return + + upscaler1 = next(iter([x for x in shared.sd_upscalers if x.name == upscaler_name]), None) + assert upscaler1, f'could not find upscaler named {upscaler_name}' + + pp.image = self.upscale(pp.image, pp.info, upscaler1, 0, upscale_by, 0, 0, False) + pp.info[f"Postprocess upscaler"] = upscaler1.name diff --git a/style.css b/style.css index ec046f78..dd914104 100644 --- a/style.css +++ b/style.css @@ -164,7 +164,7 @@ min-height: 3.2em; } -#txt2img_styles ul, #img2img_styles ul{ +ul.list-none{ max-height: 35em; z-index: 2000; } @@ -714,9 +714,6 @@ footer { white-space: nowrap; min-width: auto; } -#txt2img_hires_fix{ - margin-left: -0.8em; -} #img2img_copy_to_img2img, #img2img_copy_to_sketch, #img2img_copy_to_inpaint, #img2img_copy_to_inpaint_sketch{ margin-left: 0em; @@ -744,7 +741,6 @@ footer { .dark .gr-compact{ background-color: rgb(31 41 55 / var(--tw-bg-opacity)); - margin-left: 0.8em; } .gr-compact{ diff --git a/webui-macos-env.sh b/webui-macos-env.sh index 95ca9c55..fa187dd1 100644 --- a/webui-macos-env.sh +++ b/webui-macos-env.sh @@ -10,7 +10,7 @@ then fi export install_dir="$HOME" -export COMMANDLINE_ARGS="--skip-torch-cuda-test --no-half --use-cpu interrogate" +export COMMANDLINE_ARGS="--skip-torch-cuda-test --upcast-sampling --use-cpu interrogate" export TORCH_COMMAND="pip install torch==1.12.1 torchvision==0.13.1" export K_DIFFUSION_REPO="https://github.com/brkirch/k-diffusion.git" export K_DIFFUSION_COMMIT_HASH="51c9778f269cedb55a4d88c79c0246d35bdadb71"