diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index edd0e2a7..d1703135 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -29,7 +29,7 @@ class ImageSaveParams: class CFGDenoiserParams: - def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps): + def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps, tensor, uncond): self.x = x """Latent image representation in the process of being denoised""" @@ -44,6 +44,12 @@ class CFGDenoiserParams: self.total_sampling_steps = total_sampling_steps """Total number of sampling steps planned""" + + self.tensor = tensor + """ Encoder hidden states of conditioning""" + + self.uncond = uncond + """ Encoder hidden states of unconditioning""" class CFGDenoisedParams: diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 528f513f..ea974be0 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -101,11 +101,13 @@ class CFGDenoiser(torch.nn.Module): sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma]) image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond] + [torch.zeros_like(self.init_latent)]) - denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) + denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond) cfg_denoiser_callback(denoiser_params) x_in = denoiser_params.x image_cond_in = denoiser_params.image_cond sigma_in = denoiser_params.sigma + tensor = denoiser_params.tensor + uncond = denoiser_params.uncond if tensor.shape[1] == uncond.shape[1]: if not is_edit_model: