Merge branch 'master' into weighted-learning
This commit is contained in:
commit
dfb3b8f398
@ -104,8 +104,7 @@ Alternatively, use online services (like Google Colab):
|
|||||||
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
|
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
|
||||||
2. Install [git](https://git-scm.com/download/win).
|
2. Install [git](https://git-scm.com/download/win).
|
||||||
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
|
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
|
||||||
4. Place stable diffusion checkpoint (`model.ckpt`) in the `models/Stable-diffusion` directory (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it).
|
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
|
||||||
5. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
|
|
||||||
|
|
||||||
### Automatic Installation on Linux
|
### Automatic Installation on Linux
|
||||||
1. Install the dependencies:
|
1. Install the dependencies:
|
||||||
@ -121,7 +120,7 @@ sudo pacman -S wget git python3
|
|||||||
```bash
|
```bash
|
||||||
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
|
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
|
||||||
```
|
```
|
||||||
|
3. Run `webui.sh`.
|
||||||
### Installation on Apple Silicon
|
### Installation on Apple Silicon
|
||||||
|
|
||||||
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).
|
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).
|
||||||
|
@ -8,8 +8,8 @@ titles = {
|
|||||||
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
|
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
|
||||||
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
|
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
|
||||||
|
|
||||||
"Batch count": "How many batches of images to create",
|
"Batch count": "How many batches of images to create (has no impact on generation performance or VRAM usage)",
|
||||||
"Batch size": "How many image to create in a single batch",
|
"Batch size": "How many image to create in a single batch (increases generation performance at cost of higher VRAM usage)",
|
||||||
"CFG Scale": "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results",
|
"CFG Scale": "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results",
|
||||||
"Seed": "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result",
|
"Seed": "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result",
|
||||||
"\u{1f3b2}\ufe0f": "Set seed to -1, which will cause a new random number to be used every time",
|
"\u{1f3b2}\ufe0f": "Set seed to -1, which will cause a new random number to be used every time",
|
||||||
|
@ -242,7 +242,7 @@ def prepare_environment():
|
|||||||
|
|
||||||
sys.argv += shlex.split(commandline_args)
|
sys.argv += shlex.split(commandline_args)
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser(add_help=False)
|
||||||
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default='config.json')
|
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default='config.json')
|
||||||
args, _ = parser.parse_known_args(sys.argv)
|
args, _ = parser.parse_known_args(sys.argv)
|
||||||
|
|
||||||
|
@ -498,7 +498,7 @@ class Api:
|
|||||||
if not apply_optimizations:
|
if not apply_optimizations:
|
||||||
sd_hijack.undo_optimizations()
|
sd_hijack.undo_optimizations()
|
||||||
try:
|
try:
|
||||||
hypernetwork, filename = train_hypernetwork(*args)
|
hypernetwork, filename = train_hypernetwork(**args)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
error = e
|
error = e
|
||||||
finally:
|
finally:
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
# this file is adapted from https://github.com/victorca25/iNNfer
|
# this file is adapted from https://github.com/victorca25/iNNfer
|
||||||
|
|
||||||
|
from collections import OrderedDict
|
||||||
import math
|
import math
|
||||||
import functools
|
import functools
|
||||||
import torch
|
import torch
|
||||||
|
@ -2,6 +2,7 @@ import os
|
|||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
|
import time
|
||||||
import git
|
import git
|
||||||
|
|
||||||
from modules import paths, shared
|
from modules import paths, shared
|
||||||
@ -25,6 +26,7 @@ class Extension:
|
|||||||
self.status = ''
|
self.status = ''
|
||||||
self.can_update = False
|
self.can_update = False
|
||||||
self.is_builtin = is_builtin
|
self.is_builtin = is_builtin
|
||||||
|
self.version = ''
|
||||||
|
|
||||||
repo = None
|
repo = None
|
||||||
try:
|
try:
|
||||||
@ -40,6 +42,10 @@ class Extension:
|
|||||||
try:
|
try:
|
||||||
self.remote = next(repo.remote().urls, None)
|
self.remote = next(repo.remote().urls, None)
|
||||||
self.status = 'unknown'
|
self.status = 'unknown'
|
||||||
|
head = repo.head.commit
|
||||||
|
ts = time.asctime(time.gmtime(repo.head.commit.committed_date))
|
||||||
|
self.version = f'{head.hexsha[:8]} ({ts})'
|
||||||
|
|
||||||
except Exception:
|
except Exception:
|
||||||
self.remote = None
|
self.remote = None
|
||||||
|
|
||||||
|
@ -74,8 +74,8 @@ def image_from_url_text(filedata):
|
|||||||
return image
|
return image
|
||||||
|
|
||||||
|
|
||||||
def add_paste_fields(tabname, init_img, fields):
|
def add_paste_fields(tabname, init_img, fields, override_settings_component=None):
|
||||||
paste_fields[tabname] = {"init_img": init_img, "fields": fields}
|
paste_fields[tabname] = {"init_img": init_img, "fields": fields, "override_settings_component": override_settings_component}
|
||||||
|
|
||||||
# backwards compatibility for existing extensions
|
# backwards compatibility for existing extensions
|
||||||
import modules.ui
|
import modules.ui
|
||||||
@ -110,6 +110,7 @@ def connect_paste_params_buttons():
|
|||||||
for binding in registered_param_bindings:
|
for binding in registered_param_bindings:
|
||||||
destination_image_component = paste_fields[binding.tabname]["init_img"]
|
destination_image_component = paste_fields[binding.tabname]["init_img"]
|
||||||
fields = paste_fields[binding.tabname]["fields"]
|
fields = paste_fields[binding.tabname]["fields"]
|
||||||
|
override_settings_component = binding.override_settings_component or paste_fields[binding.tabname]["override_settings_component"]
|
||||||
|
|
||||||
destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None)
|
destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None)
|
||||||
destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None)
|
destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None)
|
||||||
@ -130,7 +131,7 @@ def connect_paste_params_buttons():
|
|||||||
)
|
)
|
||||||
|
|
||||||
if binding.source_text_component is not None and fields is not None:
|
if binding.source_text_component is not None and fields is not None:
|
||||||
connect_paste(binding.paste_button, fields, binding.source_text_component, binding.override_settings_component, binding.tabname)
|
connect_paste(binding.paste_button, fields, binding.source_text_component, override_settings_component, binding.tabname)
|
||||||
|
|
||||||
if binding.source_tabname is not None and fields is not None:
|
if binding.source_tabname is not None and fields is not None:
|
||||||
paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else [])
|
paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else [])
|
||||||
|
@ -380,8 +380,8 @@ def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):
|
|||||||
layer.hyper_k = hypernetwork_layers[0]
|
layer.hyper_k = hypernetwork_layers[0]
|
||||||
layer.hyper_v = hypernetwork_layers[1]
|
layer.hyper_v = hypernetwork_layers[1]
|
||||||
|
|
||||||
context_k = hypernetwork_layers[0](context_k)
|
context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k)))
|
||||||
context_v = hypernetwork_layers[1](context_v)
|
context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v)))
|
||||||
return context_k, context_v
|
return context_k, context_v
|
||||||
|
|
||||||
|
|
||||||
|
@ -18,7 +18,7 @@ import string
|
|||||||
import json
|
import json
|
||||||
import hashlib
|
import hashlib
|
||||||
|
|
||||||
from modules import sd_samplers, shared, script_callbacks
|
from modules import sd_samplers, shared, script_callbacks, errors
|
||||||
from modules.shared import opts, cmd_opts
|
from modules.shared import opts, cmd_opts
|
||||||
|
|
||||||
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
|
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
|
||||||
@ -553,6 +553,8 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
|||||||
elif extension.lower() in (".jpg", ".jpeg", ".webp"):
|
elif extension.lower() in (".jpg", ".jpeg", ".webp"):
|
||||||
if image_to_save.mode == 'RGBA':
|
if image_to_save.mode == 'RGBA':
|
||||||
image_to_save = image_to_save.convert("RGB")
|
image_to_save = image_to_save.convert("RGB")
|
||||||
|
elif image_to_save.mode == 'I;16':
|
||||||
|
image_to_save = image_to_save.point(lambda p: p * 0.0038910505836576).convert("RGB" if extension.lower() == ".webp" else "L")
|
||||||
|
|
||||||
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
|
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
|
||||||
|
|
||||||
@ -575,17 +577,19 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
|||||||
|
|
||||||
image.already_saved_as = fullfn
|
image.already_saved_as = fullfn
|
||||||
|
|
||||||
target_side_length = 4000
|
oversize = image.width > opts.target_side_length or image.height > opts.target_side_length
|
||||||
oversize = image.width > target_side_length or image.height > target_side_length
|
if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > opts.img_downscale_threshold * 1024 * 1024):
|
||||||
if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > 4 * 1024 * 1024):
|
|
||||||
ratio = image.width / image.height
|
ratio = image.width / image.height
|
||||||
|
|
||||||
if oversize and ratio > 1:
|
if oversize and ratio > 1:
|
||||||
image = image.resize((target_side_length, image.height * target_side_length // image.width), LANCZOS)
|
image = image.resize((opts.target_side_length, image.height * opts.target_side_length // image.width), LANCZOS)
|
||||||
elif oversize:
|
elif oversize:
|
||||||
image = image.resize((image.width * target_side_length // image.height, target_side_length), LANCZOS)
|
image = image.resize((image.width * opts.target_side_length // image.height, opts.target_side_length), LANCZOS)
|
||||||
|
|
||||||
_atomically_save_image(image, fullfn_without_extension, ".jpg")
|
try:
|
||||||
|
_atomically_save_image(image, fullfn_without_extension, ".jpg")
|
||||||
|
except Exception as e:
|
||||||
|
errors.display(e, "saving image as downscaled JPG")
|
||||||
|
|
||||||
if opts.save_txt and info is not None:
|
if opts.save_txt and info is not None:
|
||||||
txt_fullfn = f"{fullfn_without_extension}.txt"
|
txt_fullfn = f"{fullfn_without_extension}.txt"
|
||||||
|
@ -73,6 +73,8 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
|
|||||||
|
|
||||||
if not save_normally:
|
if not save_normally:
|
||||||
os.makedirs(output_dir, exist_ok=True)
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
|
if processed_image.mode == 'RGBA':
|
||||||
|
processed_image = processed_image.convert("RGB")
|
||||||
processed_image.save(os.path.join(output_dir, filename))
|
processed_image.save(os.path.join(output_dir, filename))
|
||||||
|
|
||||||
|
|
||||||
|
@ -543,8 +543,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||||||
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
|
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
|
||||||
model_hijack.embedding_db.load_textual_inversion_embeddings()
|
model_hijack.embedding_db.load_textual_inversion_embeddings()
|
||||||
|
|
||||||
_, extra_network_data = extra_networks.parse_prompts(p.all_prompts[0:1])
|
|
||||||
|
|
||||||
if p.scripts is not None:
|
if p.scripts is not None:
|
||||||
p.scripts.process(p)
|
p.scripts.process(p)
|
||||||
|
|
||||||
@ -582,13 +580,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||||||
if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
|
if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
|
||||||
sd_vae_approx.model()
|
sd_vae_approx.model()
|
||||||
|
|
||||||
if not p.disable_extra_networks:
|
|
||||||
extra_networks.activate(p, extra_network_data)
|
|
||||||
|
|
||||||
with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
|
|
||||||
processed = Processed(p, [], p.seed, "")
|
|
||||||
file.write(processed.infotext(p, 0))
|
|
||||||
|
|
||||||
if state.job_count == -1:
|
if state.job_count == -1:
|
||||||
state.job_count = p.n_iter
|
state.job_count = p.n_iter
|
||||||
|
|
||||||
@ -609,11 +600,24 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||||||
if len(prompts) == 0:
|
if len(prompts) == 0:
|
||||||
break
|
break
|
||||||
|
|
||||||
prompts, _ = extra_networks.parse_prompts(prompts)
|
prompts, extra_network_data = extra_networks.parse_prompts(prompts)
|
||||||
|
|
||||||
|
if not p.disable_extra_networks:
|
||||||
|
with devices.autocast():
|
||||||
|
extra_networks.activate(p, extra_network_data)
|
||||||
|
|
||||||
if p.scripts is not None:
|
if p.scripts is not None:
|
||||||
p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
|
p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
|
||||||
|
|
||||||
|
# params.txt should be saved after scripts.process_batch, since the
|
||||||
|
# infotext could be modified by that callback
|
||||||
|
# Example: a wildcard processed by process_batch sets an extra model
|
||||||
|
# strength, which is saved as "Model Strength: 1.0" in the infotext
|
||||||
|
if n == 0:
|
||||||
|
with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
|
||||||
|
processed = Processed(p, [], p.seed, "")
|
||||||
|
file.write(processed.infotext(p, 0))
|
||||||
|
|
||||||
uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps, cached_uc)
|
uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps, cached_uc)
|
||||||
c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps, cached_c)
|
c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps, cached_c)
|
||||||
|
|
||||||
|
@ -46,6 +46,18 @@ class CFGDenoiserParams:
|
|||||||
"""Total number of sampling steps planned"""
|
"""Total number of sampling steps planned"""
|
||||||
|
|
||||||
|
|
||||||
|
class CFGDenoisedParams:
|
||||||
|
def __init__(self, x, sampling_step, total_sampling_steps):
|
||||||
|
self.x = x
|
||||||
|
"""Latent image representation in the process of being denoised"""
|
||||||
|
|
||||||
|
self.sampling_step = sampling_step
|
||||||
|
"""Current Sampling step number"""
|
||||||
|
|
||||||
|
self.total_sampling_steps = total_sampling_steps
|
||||||
|
"""Total number of sampling steps planned"""
|
||||||
|
|
||||||
|
|
||||||
class UiTrainTabParams:
|
class UiTrainTabParams:
|
||||||
def __init__(self, txt2img_preview_params):
|
def __init__(self, txt2img_preview_params):
|
||||||
self.txt2img_preview_params = txt2img_preview_params
|
self.txt2img_preview_params = txt2img_preview_params
|
||||||
@ -68,6 +80,7 @@ callback_map = dict(
|
|||||||
callbacks_before_image_saved=[],
|
callbacks_before_image_saved=[],
|
||||||
callbacks_image_saved=[],
|
callbacks_image_saved=[],
|
||||||
callbacks_cfg_denoiser=[],
|
callbacks_cfg_denoiser=[],
|
||||||
|
callbacks_cfg_denoised=[],
|
||||||
callbacks_before_component=[],
|
callbacks_before_component=[],
|
||||||
callbacks_after_component=[],
|
callbacks_after_component=[],
|
||||||
callbacks_image_grid=[],
|
callbacks_image_grid=[],
|
||||||
@ -150,6 +163,14 @@ def cfg_denoiser_callback(params: CFGDenoiserParams):
|
|||||||
report_exception(c, 'cfg_denoiser_callback')
|
report_exception(c, 'cfg_denoiser_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def cfg_denoised_callback(params: CFGDenoisedParams):
|
||||||
|
for c in callback_map['callbacks_cfg_denoised']:
|
||||||
|
try:
|
||||||
|
c.callback(params)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'cfg_denoised_callback')
|
||||||
|
|
||||||
|
|
||||||
def before_component_callback(component, **kwargs):
|
def before_component_callback(component, **kwargs):
|
||||||
for c in callback_map['callbacks_before_component']:
|
for c in callback_map['callbacks_before_component']:
|
||||||
try:
|
try:
|
||||||
@ -283,6 +304,14 @@ def on_cfg_denoiser(callback):
|
|||||||
add_callback(callback_map['callbacks_cfg_denoiser'], callback)
|
add_callback(callback_map['callbacks_cfg_denoiser'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_cfg_denoised(callback):
|
||||||
|
"""register a function to be called in the kdiffussion cfg_denoiser method after building the inner model inputs.
|
||||||
|
The callback is called with one argument:
|
||||||
|
- params: CFGDenoisedParams - parameters to be passed to the inner model and sampling state details.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_cfg_denoised'], callback)
|
||||||
|
|
||||||
|
|
||||||
def on_before_component(callback):
|
def on_before_component(callback):
|
||||||
"""register a function to be called before a component is created.
|
"""register a function to be called before a component is created.
|
||||||
The callback is called with arguments:
|
The callback is called with arguments:
|
||||||
|
@ -154,6 +154,8 @@ class StableDiffusionModelHijack:
|
|||||||
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
||||||
|
|
||||||
apply_weighted_forward(m)
|
apply_weighted_forward(m)
|
||||||
|
if m.cond_stage_key == "edit":
|
||||||
|
sd_hijack_unet.hijack_ddpm_edit()
|
||||||
|
|
||||||
self.optimization_method = apply_optimizations()
|
self.optimization_method = apply_optimizations()
|
||||||
|
|
||||||
|
@ -11,6 +11,7 @@ import ldm.models.diffusion.plms
|
|||||||
from ldm.models.diffusion.ddpm import LatentDiffusion
|
from ldm.models.diffusion.ddpm import LatentDiffusion
|
||||||
from ldm.models.diffusion.plms import PLMSSampler
|
from ldm.models.diffusion.plms import PLMSSampler
|
||||||
from ldm.models.diffusion.ddim import DDIMSampler, noise_like
|
from ldm.models.diffusion.ddim import DDIMSampler, noise_like
|
||||||
|
from ldm.models.diffusion.sampling_util import norm_thresholding
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
|
@ -44,6 +44,7 @@ def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
|
|||||||
with devices.autocast():
|
with devices.autocast():
|
||||||
return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
|
return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
|
||||||
|
|
||||||
|
|
||||||
class GELUHijack(torch.nn.GELU, torch.nn.Module):
|
class GELUHijack(torch.nn.GELU, torch.nn.Module):
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
torch.nn.GELU.__init__(self, *args, **kwargs)
|
torch.nn.GELU.__init__(self, *args, **kwargs)
|
||||||
@ -53,6 +54,16 @@ class GELUHijack(torch.nn.GELU, torch.nn.Module):
|
|||||||
else:
|
else:
|
||||||
return torch.nn.GELU.forward(self, x)
|
return torch.nn.GELU.forward(self, x)
|
||||||
|
|
||||||
|
|
||||||
|
ddpm_edit_hijack = None
|
||||||
|
def hijack_ddpm_edit():
|
||||||
|
global ddpm_edit_hijack
|
||||||
|
if not ddpm_edit_hijack:
|
||||||
|
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
|
||||||
|
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
|
||||||
|
ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
|
||||||
|
|
||||||
|
|
||||||
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
|
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
|
||||||
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
|
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
|
||||||
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
|
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
|
||||||
|
@ -105,7 +105,7 @@ def checkpoint_tiles():
|
|||||||
def list_models():
|
def list_models():
|
||||||
checkpoints_list.clear()
|
checkpoints_list.clear()
|
||||||
checkpoint_alisases.clear()
|
checkpoint_alisases.clear()
|
||||||
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], ext_blacklist=[".vae.safetensors"])
|
model_list = modelloader.load_models(model_path=model_path, model_url="https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors", command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])
|
||||||
|
|
||||||
cmd_ckpt = shared.cmd_opts.ckpt
|
cmd_ckpt = shared.cmd_opts.ckpt
|
||||||
if os.path.exists(cmd_ckpt):
|
if os.path.exists(cmd_ckpt):
|
||||||
|
@ -8,6 +8,7 @@ from modules import prompt_parser, devices, sd_samplers_common
|
|||||||
from modules.shared import opts, state
|
from modules.shared import opts, state
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
|
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
|
||||||
|
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
|
||||||
|
|
||||||
samplers_k_diffusion = [
|
samplers_k_diffusion = [
|
||||||
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
|
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
|
||||||
@ -136,6 +137,9 @@ class CFGDenoiser(torch.nn.Module):
|
|||||||
|
|
||||||
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
|
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
|
||||||
|
|
||||||
|
denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps)
|
||||||
|
cfg_denoised_callback(denoised_params)
|
||||||
|
|
||||||
devices.test_for_nans(x_out, "unet")
|
devices.test_for_nans(x_out, "unet")
|
||||||
|
|
||||||
if opts.live_preview_content == "Prompt":
|
if opts.live_preview_content == "Prompt":
|
||||||
@ -269,6 +273,16 @@ class KDiffusionSampler:
|
|||||||
|
|
||||||
return sigmas
|
return sigmas
|
||||||
|
|
||||||
|
def create_noise_sampler(self, x, sigmas, p):
|
||||||
|
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
|
||||||
|
if shared.opts.no_dpmpp_sde_batch_determinism:
|
||||||
|
return None
|
||||||
|
|
||||||
|
from k_diffusion.sampling import BrownianTreeNoiseSampler
|
||||||
|
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||||
|
current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
|
||||||
|
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
|
||||||
|
|
||||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
||||||
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
|
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
|
||||||
|
|
||||||
@ -278,18 +292,24 @@ class KDiffusionSampler:
|
|||||||
xi = x + noise * sigma_sched[0]
|
xi = x + noise * sigma_sched[0]
|
||||||
|
|
||||||
extra_params_kwargs = self.initialize(p)
|
extra_params_kwargs = self.initialize(p)
|
||||||
if 'sigma_min' in inspect.signature(self.func).parameters:
|
parameters = inspect.signature(self.func).parameters
|
||||||
|
|
||||||
|
if 'sigma_min' in parameters:
|
||||||
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
|
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
|
||||||
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
|
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
|
||||||
if 'sigma_max' in inspect.signature(self.func).parameters:
|
if 'sigma_max' in parameters:
|
||||||
extra_params_kwargs['sigma_max'] = sigma_sched[0]
|
extra_params_kwargs['sigma_max'] = sigma_sched[0]
|
||||||
if 'n' in inspect.signature(self.func).parameters:
|
if 'n' in parameters:
|
||||||
extra_params_kwargs['n'] = len(sigma_sched) - 1
|
extra_params_kwargs['n'] = len(sigma_sched) - 1
|
||||||
if 'sigma_sched' in inspect.signature(self.func).parameters:
|
if 'sigma_sched' in parameters:
|
||||||
extra_params_kwargs['sigma_sched'] = sigma_sched
|
extra_params_kwargs['sigma_sched'] = sigma_sched
|
||||||
if 'sigmas' in inspect.signature(self.func).parameters:
|
if 'sigmas' in parameters:
|
||||||
extra_params_kwargs['sigmas'] = sigma_sched
|
extra_params_kwargs['sigmas'] = sigma_sched
|
||||||
|
|
||||||
|
if self.funcname == 'sample_dpmpp_sde':
|
||||||
|
noise_sampler = self.create_noise_sampler(x, sigmas, p)
|
||||||
|
extra_params_kwargs['noise_sampler'] = noise_sampler
|
||||||
|
|
||||||
self.model_wrap_cfg.init_latent = x
|
self.model_wrap_cfg.init_latent = x
|
||||||
self.last_latent = x
|
self.last_latent = x
|
||||||
extra_args={
|
extra_args={
|
||||||
@ -303,7 +323,7 @@ class KDiffusionSampler:
|
|||||||
|
|
||||||
return samples
|
return samples
|
||||||
|
|
||||||
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
|
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
||||||
steps = steps or p.steps
|
steps = steps or p.steps
|
||||||
|
|
||||||
sigmas = self.get_sigmas(p, steps)
|
sigmas = self.get_sigmas(p, steps)
|
||||||
@ -311,14 +331,20 @@ class KDiffusionSampler:
|
|||||||
x = x * sigmas[0]
|
x = x * sigmas[0]
|
||||||
|
|
||||||
extra_params_kwargs = self.initialize(p)
|
extra_params_kwargs = self.initialize(p)
|
||||||
if 'sigma_min' in inspect.signature(self.func).parameters:
|
parameters = inspect.signature(self.func).parameters
|
||||||
|
|
||||||
|
if 'sigma_min' in parameters:
|
||||||
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
|
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
|
||||||
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
|
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
|
||||||
if 'n' in inspect.signature(self.func).parameters:
|
if 'n' in parameters:
|
||||||
extra_params_kwargs['n'] = steps
|
extra_params_kwargs['n'] = steps
|
||||||
else:
|
else:
|
||||||
extra_params_kwargs['sigmas'] = sigmas
|
extra_params_kwargs['sigmas'] = sigmas
|
||||||
|
|
||||||
|
if self.funcname == 'sample_dpmpp_sde':
|
||||||
|
noise_sampler = self.create_noise_sampler(x, sigmas, p)
|
||||||
|
extra_params_kwargs['noise_sampler'] = noise_sampler
|
||||||
|
|
||||||
self.last_latent = x
|
self.last_latent = x
|
||||||
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
|
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
|
||||||
'cond': conditioning,
|
'cond': conditioning,
|
||||||
|
@ -325,7 +325,9 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
|
|||||||
"save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
|
"save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
|
||||||
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
|
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
|
||||||
"jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
|
"jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
|
||||||
"export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"),
|
"export_for_4chan": OptionInfo(True, "If the saved image file size is above the limit, or its either width or height are above the limit, save a downscaled copy as JPG"),
|
||||||
|
"img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number),
|
||||||
|
"target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number),
|
||||||
|
|
||||||
"use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
|
"use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
|
||||||
"use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
|
"use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
|
||||||
@ -364,7 +366,7 @@ options_templates.update(options_section(('upscaling', "Upscaling"), {
|
|||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('face-restoration', "Face restoration"), {
|
options_templates.update(options_section(('face-restoration', "Face restoration"), {
|
||||||
"face_restoration_model": OptionInfo(None, "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
|
"face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
|
||||||
"code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
|
"code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
|
||||||
"face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
|
"face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
|
||||||
}))
|
}))
|
||||||
@ -414,6 +416,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
|||||||
options_templates.update(options_section(('compatibility', "Compatibility"), {
|
options_templates.update(options_section(('compatibility', "Compatibility"), {
|
||||||
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
||||||
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
|
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
|
||||||
|
"no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
|
||||||
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
|
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
|
@ -20,4 +20,4 @@ def sd_vae_items():
|
|||||||
def refresh_vae_list():
|
def refresh_vae_list():
|
||||||
import modules.sd_vae
|
import modules.sd_vae
|
||||||
|
|
||||||
return modules.sd_vae.refresh_vae_list
|
modules.sd_vae.refresh_vae_list()
|
||||||
|
@ -631,9 +631,9 @@ def create_ui():
|
|||||||
(hr_resize_y, "Hires resize-2"),
|
(hr_resize_y, "Hires resize-2"),
|
||||||
*modules.scripts.scripts_txt2img.infotext_fields
|
*modules.scripts.scripts_txt2img.infotext_fields
|
||||||
]
|
]
|
||||||
parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields)
|
parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields, override_settings)
|
||||||
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
|
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
|
||||||
paste_button=txt2img_paste, tabname="txt2img", source_text_component=txt2img_prompt, source_image_component=None, override_settings_component=override_settings,
|
paste_button=txt2img_paste, tabname="txt2img", source_text_component=txt2img_prompt, source_image_component=None,
|
||||||
))
|
))
|
||||||
|
|
||||||
txt2img_preview_params = [
|
txt2img_preview_params = [
|
||||||
@ -963,10 +963,10 @@ def create_ui():
|
|||||||
(mask_blur, "Mask blur"),
|
(mask_blur, "Mask blur"),
|
||||||
*modules.scripts.scripts_img2img.infotext_fields
|
*modules.scripts.scripts_img2img.infotext_fields
|
||||||
]
|
]
|
||||||
parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields)
|
parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields, override_settings)
|
||||||
parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields)
|
parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields, override_settings)
|
||||||
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
|
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
|
||||||
paste_button=img2img_paste, tabname="img2img", source_text_component=img2img_prompt, source_image_component=None, override_settings_component=override_settings,
|
paste_button=img2img_paste, tabname="img2img", source_text_component=img2img_prompt, source_image_component=None,
|
||||||
))
|
))
|
||||||
|
|
||||||
modules.scripts.scripts_current = None
|
modules.scripts.scripts_current = None
|
||||||
@ -1786,7 +1786,7 @@ def versions_html():
|
|||||||
return f"""
|
return f"""
|
||||||
python: <span title="{sys.version}">{python_version}</span>
|
python: <span title="{sys.version}">{python_version}</span>
|
||||||
•
|
•
|
||||||
torch: {torch.__version__}
|
torch: {getattr(torch, '__long_version__',torch.__version__)}
|
||||||
•
|
•
|
||||||
xformers: {xformers_version}
|
xformers: {xformers_version}
|
||||||
•
|
•
|
||||||
|
@ -80,6 +80,7 @@ def extension_table():
|
|||||||
<tr>
|
<tr>
|
||||||
<th><abbr title="Use checkbox to enable the extension; it will be enabled or disabled when you click apply button">Extension</abbr></th>
|
<th><abbr title="Use checkbox to enable the extension; it will be enabled or disabled when you click apply button">Extension</abbr></th>
|
||||||
<th>URL</th>
|
<th>URL</th>
|
||||||
|
<th><abbr title="Extension version">Version</abbr></th>
|
||||||
<th><abbr title="Use checkbox to mark the extension for update; it will be updated when you click apply button">Update</abbr></th>
|
<th><abbr title="Use checkbox to mark the extension for update; it will be updated when you click apply button">Update</abbr></th>
|
||||||
</tr>
|
</tr>
|
||||||
</thead>
|
</thead>
|
||||||
@ -87,11 +88,7 @@ def extension_table():
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
for ext in extensions.extensions:
|
for ext in extensions.extensions:
|
||||||
remote = ""
|
remote = f"""<a href="{html.escape(ext.remote or '')}" target="_blank">{html.escape("built-in" if ext.is_builtin else ext.remote or '')}</a>"""
|
||||||
if ext.is_builtin:
|
|
||||||
remote = "built-in"
|
|
||||||
elif ext.remote:
|
|
||||||
remote = f"""<a href="{html.escape(ext.remote or '')}" target="_blank">{html.escape("built-in" if ext.is_builtin else ext.remote or '')}</a>"""
|
|
||||||
|
|
||||||
if ext.can_update:
|
if ext.can_update:
|
||||||
ext_status = f"""<label><input class="gr-check-radio gr-checkbox" name="update_{html.escape(ext.name)}" checked="checked" type="checkbox">{html.escape(ext.status)}</label>"""
|
ext_status = f"""<label><input class="gr-check-radio gr-checkbox" name="update_{html.escape(ext.name)}" checked="checked" type="checkbox">{html.escape(ext.status)}</label>"""
|
||||||
@ -102,6 +99,7 @@ def extension_table():
|
|||||||
<tr>
|
<tr>
|
||||||
<td><label><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td>
|
<td><label><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td>
|
||||||
<td>{remote}</td>
|
<td>{remote}</td>
|
||||||
|
<td>{ext.version}</td>
|
||||||
<td{' class="extension_status"' if ext.remote is not None else ''}>{ext_status}</td>
|
<td{' class="extension_status"' if ext.remote is not None else ''}>{ext_status}</td>
|
||||||
</tr>
|
</tr>
|
||||||
"""
|
"""
|
||||||
|
@ -76,6 +76,10 @@ class ExtraNetworksPage:
|
|||||||
while subdir.startswith("/"):
|
while subdir.startswith("/"):
|
||||||
subdir = subdir[1:]
|
subdir = subdir[1:]
|
||||||
|
|
||||||
|
is_empty = len(os.listdir(x)) == 0
|
||||||
|
if not is_empty and not subdir.endswith("/"):
|
||||||
|
subdir = subdir + "/"
|
||||||
|
|
||||||
subdirs[subdir] = 1
|
subdirs[subdir] = 1
|
||||||
|
|
||||||
if subdirs:
|
if subdirs:
|
||||||
@ -94,11 +98,13 @@ class ExtraNetworksPage:
|
|||||||
dirs = "".join([f"<li>{x}</li>" for x in self.allowed_directories_for_previews()])
|
dirs = "".join([f"<li>{x}</li>" for x in self.allowed_directories_for_previews()])
|
||||||
items_html = shared.html("extra-networks-no-cards.html").format(dirs=dirs)
|
items_html = shared.html("extra-networks-no-cards.html").format(dirs=dirs)
|
||||||
|
|
||||||
|
self_name_id = self.name.replace(" ", "_")
|
||||||
|
|
||||||
res = f"""
|
res = f"""
|
||||||
<div id='{tabname}_{self.name}_subdirs' class='extra-network-subdirs extra-network-subdirs-{view}'>
|
<div id='{tabname}_{self_name_id}_subdirs' class='extra-network-subdirs extra-network-subdirs-{view}'>
|
||||||
{subdirs_html}
|
{subdirs_html}
|
||||||
</div>
|
</div>
|
||||||
<div id='{tabname}_{self.name}_cards' class='extra-network-{view}'>
|
<div id='{tabname}_{self_name_id}_cards' class='extra-network-{view}'>
|
||||||
{items_html}
|
{items_html}
|
||||||
</div>
|
</div>
|
||||||
"""
|
"""
|
||||||
|
@ -54,7 +54,7 @@ class Script(scripts.Script):
|
|||||||
prompt_type = gr.Radio(["positive", "negative"], label="Select prompt", elem_id=self.elem_id("prompt_type"), value="positive")
|
prompt_type = gr.Radio(["positive", "negative"], label="Select prompt", elem_id=self.elem_id("prompt_type"), value="positive")
|
||||||
variations_delimiter = gr.Radio(["comma", "space"], label="Select joining char", elem_id=self.elem_id("variations_delimiter"), value="comma")
|
variations_delimiter = gr.Radio(["comma", "space"], label="Select joining char", elem_id=self.elem_id("variations_delimiter"), value="comma")
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
margin_size = gr.Slider(label="Grid margins (px)", min=0, max=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
|
margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
|
||||||
|
|
||||||
return [put_at_start, different_seeds, prompt_type, variations_delimiter, margin_size]
|
return [put_at_start, different_seeds, prompt_type, variations_delimiter, margin_size]
|
||||||
|
|
||||||
@ -99,8 +99,8 @@ class Script(scripts.Script):
|
|||||||
p.prompt_for_display = positive_prompt
|
p.prompt_for_display = positive_prompt
|
||||||
processed = process_images(p)
|
processed = process_images(p)
|
||||||
|
|
||||||
grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))
|
grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))
|
||||||
grid = images.draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts, margin_size)
|
grid = images.draw_prompt_matrix(grid, processed.images[0].width, processed.images[1].height, prompt_matrix_parts, margin_size)
|
||||||
processed.images.insert(0, grid)
|
processed.images.insert(0, grid)
|
||||||
processed.index_of_first_image = 1
|
processed.index_of_first_image = 1
|
||||||
processed.infotexts.insert(0, processed.infotexts[0])
|
processed.infotexts.insert(0, processed.infotexts[0])
|
||||||
|
@ -25,6 +25,8 @@ from modules.ui_components import ToolButton
|
|||||||
|
|
||||||
fill_values_symbol = "\U0001f4d2" # 📒
|
fill_values_symbol = "\U0001f4d2" # 📒
|
||||||
|
|
||||||
|
AxisInfo = namedtuple('AxisInfo', ['axis', 'values'])
|
||||||
|
|
||||||
|
|
||||||
def apply_field(field):
|
def apply_field(field):
|
||||||
def fun(p, x, xs):
|
def fun(p, x, xs):
|
||||||
@ -186,6 +188,7 @@ axis_options = [
|
|||||||
AxisOption("Steps", int, apply_field("steps")),
|
AxisOption("Steps", int, apply_field("steps")),
|
||||||
AxisOptionTxt2Img("Hires steps", int, apply_field("hr_second_pass_steps")),
|
AxisOptionTxt2Img("Hires steps", int, apply_field("hr_second_pass_steps")),
|
||||||
AxisOption("CFG Scale", float, apply_field("cfg_scale")),
|
AxisOption("CFG Scale", float, apply_field("cfg_scale")),
|
||||||
|
AxisOptionImg2Img("Image CFG Scale", float, apply_field("image_cfg_scale")),
|
||||||
AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
|
AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
|
||||||
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
|
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
|
||||||
AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
|
AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
|
||||||
@ -358,7 +361,7 @@ class Script(scripts.Script):
|
|||||||
include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
|
include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
|
||||||
include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
|
include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
margin_size = gr.Slider(label="Grid margins (px)", min=0, max=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
|
margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
|
||||||
|
|
||||||
with gr.Row(variant="compact", elem_id="swap_axes"):
|
with gr.Row(variant="compact", elem_id="swap_axes"):
|
||||||
swap_xy_axes_button = gr.Button(value="Swap X/Y axes", elem_id="xy_grid_swap_axes_button")
|
swap_xy_axes_button = gr.Button(value="Swap X/Y axes", elem_id="xy_grid_swap_axes_button")
|
||||||
@ -520,6 +523,10 @@ class Script(scripts.Script):
|
|||||||
|
|
||||||
grid_infotext = [None]
|
grid_infotext = [None]
|
||||||
|
|
||||||
|
state.xyz_plot_x = AxisInfo(x_opt, xs)
|
||||||
|
state.xyz_plot_y = AxisInfo(y_opt, ys)
|
||||||
|
state.xyz_plot_z = AxisInfo(z_opt, zs)
|
||||||
|
|
||||||
# If one of the axes is very slow to change between (like SD model
|
# If one of the axes is very slow to change between (like SD model
|
||||||
# checkpoint), then make sure it is in the outer iteration of the nested
|
# checkpoint), then make sure it is in the outer iteration of the nested
|
||||||
# `for` loop.
|
# `for` loop.
|
||||||
|
2
webui.py
2
webui.py
@ -20,6 +20,7 @@ import torch
|
|||||||
|
|
||||||
# Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors
|
# Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors
|
||||||
if ".dev" in torch.__version__ or "+git" in torch.__version__:
|
if ".dev" in torch.__version__ or "+git" in torch.__version__:
|
||||||
|
torch.__long_version__ = torch.__version__
|
||||||
torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
|
torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
|
||||||
|
|
||||||
from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks
|
from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks
|
||||||
@ -97,7 +98,6 @@ def initialize():
|
|||||||
modules.sd_models.setup_model()
|
modules.sd_models.setup_model()
|
||||||
codeformer.setup_model(cmd_opts.codeformer_models_path)
|
codeformer.setup_model(cmd_opts.codeformer_models_path)
|
||||||
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
|
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
|
||||||
shared.face_restorers.append(modules.face_restoration.FaceRestoration())
|
|
||||||
|
|
||||||
modelloader.list_builtin_upscalers()
|
modelloader.list_builtin_upscalers()
|
||||||
modules.scripts.load_scripts()
|
modules.scripts.load_scripts()
|
||||||
|
Loading…
Reference in New Issue
Block a user