Add ability to choose using weighted loss or not
This commit is contained in:
parent
bc50936745
commit
edb10092de
@ -496,7 +496,7 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
|
|||||||
shared.reload_hypernetworks()
|
shared.reload_hypernetworks()
|
||||||
|
|
||||||
|
|
||||||
def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||||
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
|
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
|
||||||
from modules import images
|
from modules import images
|
||||||
|
|
||||||
@ -554,7 +554,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
|
|
||||||
pin_memory = shared.opts.pin_memory
|
pin_memory = shared.opts.pin_memory
|
||||||
|
|
||||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize)
|
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)
|
||||||
|
|
||||||
if shared.opts.save_training_settings_to_txt:
|
if shared.opts.save_training_settings_to_txt:
|
||||||
saved_params = dict(
|
saved_params = dict(
|
||||||
@ -640,14 +640,19 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
|
|
||||||
with devices.autocast():
|
with devices.autocast():
|
||||||
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
||||||
w = batch.weight.to(devices.device, non_blocking=pin_memory)
|
if use_weight:
|
||||||
|
w = batch.weight.to(devices.device, non_blocking=pin_memory)
|
||||||
if tag_drop_out != 0 or shuffle_tags:
|
if tag_drop_out != 0 or shuffle_tags:
|
||||||
shared.sd_model.cond_stage_model.to(devices.device)
|
shared.sd_model.cond_stage_model.to(devices.device)
|
||||||
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
|
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
|
||||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||||
else:
|
else:
|
||||||
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
||||||
loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step
|
if use_weight:
|
||||||
|
loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step
|
||||||
|
del w
|
||||||
|
else:
|
||||||
|
loss = shared.sd_model.forward(x, c)[0] / gradient_step
|
||||||
del x
|
del x
|
||||||
del c
|
del c
|
||||||
|
|
||||||
|
@ -31,7 +31,7 @@ class DatasetEntry:
|
|||||||
|
|
||||||
|
|
||||||
class PersonalizedBase(Dataset):
|
class PersonalizedBase(Dataset):
|
||||||
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False):
|
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False, use_weight=False):
|
||||||
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
|
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
|
||||||
|
|
||||||
self.placeholder_token = placeholder_token
|
self.placeholder_token = placeholder_token
|
||||||
@ -64,7 +64,7 @@ class PersonalizedBase(Dataset):
|
|||||||
image = Image.open(path)
|
image = Image.open(path)
|
||||||
#Currently does not work for single color transparency
|
#Currently does not work for single color transparency
|
||||||
#We would need to read image.info['transparency'] for that
|
#We would need to read image.info['transparency'] for that
|
||||||
if 'A' in image.getbands():
|
if use_weight and 'A' in image.getbands():
|
||||||
alpha_channel = image.getchannel('A')
|
alpha_channel = image.getchannel('A')
|
||||||
image = image.convert('RGB')
|
image = image.convert('RGB')
|
||||||
if not varsize:
|
if not varsize:
|
||||||
@ -104,7 +104,7 @@ class PersonalizedBase(Dataset):
|
|||||||
latent_sampling_method = "once"
|
latent_sampling_method = "once"
|
||||||
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
|
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
|
||||||
|
|
||||||
if alpha_channel is not None:
|
if use_weight and alpha_channel is not None:
|
||||||
channels, *latent_size = latent_sample.shape
|
channels, *latent_size = latent_sample.shape
|
||||||
weight_img = alpha_channel.resize(latent_size)
|
weight_img = alpha_channel.resize(latent_size)
|
||||||
npweight = np.array(weight_img).astype(np.float32)
|
npweight = np.array(weight_img).astype(np.float32)
|
||||||
@ -113,9 +113,11 @@ class PersonalizedBase(Dataset):
|
|||||||
#Normalize the weight to a minimum of 0 and a mean of 1, that way the loss will be comparable to default.
|
#Normalize the weight to a minimum of 0 and a mean of 1, that way the loss will be comparable to default.
|
||||||
weight -= weight.min()
|
weight -= weight.min()
|
||||||
weight /= weight.mean()
|
weight /= weight.mean()
|
||||||
else:
|
elif use_weight:
|
||||||
#If an image does not have a alpha channel, add a ones weight map anyway so we can stack it later
|
#If an image does not have a alpha channel, add a ones weight map anyway so we can stack it later
|
||||||
weight = torch.ones([channels] + latent_size)
|
weight = torch.ones([channels] + latent_size)
|
||||||
|
else:
|
||||||
|
weight = None
|
||||||
|
|
||||||
if latent_sampling_method == "random":
|
if latent_sampling_method == "random":
|
||||||
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist, weight=weight)
|
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist, weight=weight)
|
||||||
@ -219,7 +221,10 @@ class BatchLoader:
|
|||||||
self.cond_text = [entry.cond_text for entry in data]
|
self.cond_text = [entry.cond_text for entry in data]
|
||||||
self.cond = [entry.cond for entry in data]
|
self.cond = [entry.cond for entry in data]
|
||||||
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
|
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
|
||||||
self.weight = torch.stack([entry.weight for entry in data]).squeeze(1)
|
if all(entry.weight is not None for entry in data):
|
||||||
|
self.weight = torch.stack([entry.weight for entry in data]).squeeze(1)
|
||||||
|
else:
|
||||||
|
self.weight = None
|
||||||
#self.emb_index = [entry.emb_index for entry in data]
|
#self.emb_index = [entry.emb_index for entry in data]
|
||||||
#print(self.latent_sample.device)
|
#print(self.latent_sample.device)
|
||||||
|
|
||||||
|
@ -351,7 +351,7 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
|
|||||||
assert log_directory, "Log directory is empty"
|
assert log_directory, "Log directory is empty"
|
||||||
|
|
||||||
|
|
||||||
def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||||
save_embedding_every = save_embedding_every or 0
|
save_embedding_every = save_embedding_every or 0
|
||||||
create_image_every = create_image_every or 0
|
create_image_every = create_image_every or 0
|
||||||
template_file = textual_inversion_templates.get(template_filename, None)
|
template_file = textual_inversion_templates.get(template_filename, None)
|
||||||
@ -410,7 +410,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
|
|||||||
|
|
||||||
pin_memory = shared.opts.pin_memory
|
pin_memory = shared.opts.pin_memory
|
||||||
|
|
||||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize)
|
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)
|
||||||
|
|
||||||
if shared.opts.save_training_settings_to_txt:
|
if shared.opts.save_training_settings_to_txt:
|
||||||
save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
|
save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
|
||||||
@ -480,7 +480,8 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
|
|||||||
|
|
||||||
with devices.autocast():
|
with devices.autocast():
|
||||||
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
||||||
w = batch.weight.to(devices.device, non_blocking=pin_memory)
|
if use_weight:
|
||||||
|
w = batch.weight.to(devices.device, non_blocking=pin_memory)
|
||||||
c = shared.sd_model.cond_stage_model(batch.cond_text)
|
c = shared.sd_model.cond_stage_model(batch.cond_text)
|
||||||
|
|
||||||
if is_training_inpainting_model:
|
if is_training_inpainting_model:
|
||||||
@ -491,7 +492,11 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
|
|||||||
else:
|
else:
|
||||||
cond = c
|
cond = c
|
||||||
|
|
||||||
loss = shared.sd_model.weighted_forward(x, cond, w)[0] / gradient_step
|
if use_weight:
|
||||||
|
loss = shared.sd_model.weighted_forward(x, cond, w)[0] / gradient_step
|
||||||
|
del w
|
||||||
|
else:
|
||||||
|
loss = shared.sd_model.forward(x, cond)[0] / gradient_step
|
||||||
del x
|
del x
|
||||||
|
|
||||||
_loss_step += loss.item()
|
_loss_step += loss.item()
|
||||||
|
@ -1191,6 +1191,8 @@ def create_ui():
|
|||||||
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every")
|
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every")
|
||||||
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every")
|
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every")
|
||||||
|
|
||||||
|
use_weight = gr.Checkbox(label="Use PNG alpha channel as loss weight", value=False, elem_id="use_weight")
|
||||||
|
|
||||||
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True, elem_id="train_save_image_with_stored_embedding")
|
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True, elem_id="train_save_image_with_stored_embedding")
|
||||||
preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False, elem_id="train_preview_from_txt2img")
|
preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False, elem_id="train_preview_from_txt2img")
|
||||||
|
|
||||||
@ -1304,6 +1306,7 @@ def create_ui():
|
|||||||
shuffle_tags,
|
shuffle_tags,
|
||||||
tag_drop_out,
|
tag_drop_out,
|
||||||
latent_sampling_method,
|
latent_sampling_method,
|
||||||
|
use_weight,
|
||||||
create_image_every,
|
create_image_every,
|
||||||
save_embedding_every,
|
save_embedding_every,
|
||||||
template_file,
|
template_file,
|
||||||
@ -1337,6 +1340,7 @@ def create_ui():
|
|||||||
shuffle_tags,
|
shuffle_tags,
|
||||||
tag_drop_out,
|
tag_drop_out,
|
||||||
latent_sampling_method,
|
latent_sampling_method,
|
||||||
|
use_weight,
|
||||||
create_image_every,
|
create_image_every,
|
||||||
save_embedding_every,
|
save_embedding_every,
|
||||||
template_file,
|
template_file,
|
||||||
|
Loading…
Reference in New Issue
Block a user