208 lines
6.5 KiB
Python
208 lines
6.5 KiB
Python
import glob
|
|
import os
|
|
import re
|
|
import torch
|
|
|
|
from modules import shared, devices, sd_models
|
|
|
|
re_digits = re.compile(r"\d+")
|
|
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
|
|
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
|
|
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
|
|
re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
|
|
|
|
|
|
def convert_diffusers_name_to_compvis(key):
|
|
def match(match_list, regex):
|
|
r = re.match(regex, key)
|
|
if not r:
|
|
return False
|
|
|
|
match_list.clear()
|
|
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
|
|
return True
|
|
|
|
m = []
|
|
|
|
if match(m, re_unet_down_blocks):
|
|
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"
|
|
|
|
if match(m, re_unet_mid_blocks):
|
|
return f"diffusion_model_middle_block_1_{m[1]}"
|
|
|
|
if match(m, re_unet_up_blocks):
|
|
return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
|
|
|
|
if match(m, re_text_block):
|
|
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
|
|
|
|
return key
|
|
|
|
|
|
class LoraOnDisk:
|
|
def __init__(self, name, filename):
|
|
self.name = name
|
|
self.filename = filename
|
|
|
|
|
|
class LoraModule:
|
|
def __init__(self, name):
|
|
self.name = name
|
|
self.multiplier = 1.0
|
|
self.modules = {}
|
|
self.mtime = None
|
|
|
|
|
|
class LoraUpDownModule:
|
|
def __init__(self):
|
|
self.up = None
|
|
self.down = None
|
|
self.alpha = None
|
|
|
|
|
|
def assign_lora_names_to_compvis_modules(sd_model):
|
|
lora_layer_mapping = {}
|
|
|
|
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
|
|
lora_name = name.replace(".", "_")
|
|
lora_layer_mapping[lora_name] = module
|
|
module.lora_layer_name = lora_name
|
|
|
|
for name, module in shared.sd_model.model.named_modules():
|
|
lora_name = name.replace(".", "_")
|
|
lora_layer_mapping[lora_name] = module
|
|
module.lora_layer_name = lora_name
|
|
|
|
sd_model.lora_layer_mapping = lora_layer_mapping
|
|
|
|
|
|
def load_lora(name, filename):
|
|
lora = LoraModule(name)
|
|
lora.mtime = os.path.getmtime(filename)
|
|
|
|
sd = sd_models.read_state_dict(filename)
|
|
|
|
keys_failed_to_match = []
|
|
|
|
for key_diffusers, weight in sd.items():
|
|
fullkey = convert_diffusers_name_to_compvis(key_diffusers)
|
|
key, lora_key = fullkey.split(".", 1)
|
|
|
|
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
|
|
if sd_module is None:
|
|
keys_failed_to_match.append(key_diffusers)
|
|
continue
|
|
|
|
lora_module = lora.modules.get(key, None)
|
|
if lora_module is None:
|
|
lora_module = LoraUpDownModule()
|
|
lora.modules[key] = lora_module
|
|
|
|
if lora_key == "alpha":
|
|
lora_module.alpha = weight.item()
|
|
continue
|
|
|
|
if type(sd_module) == torch.nn.Linear:
|
|
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
|
elif type(sd_module) == torch.nn.Conv2d:
|
|
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
|
else:
|
|
assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
|
|
|
|
with torch.no_grad():
|
|
module.weight.copy_(weight)
|
|
|
|
module.to(device=devices.device, dtype=devices.dtype)
|
|
|
|
if lora_key == "lora_up.weight":
|
|
lora_module.up = module
|
|
elif lora_key == "lora_down.weight":
|
|
lora_module.down = module
|
|
else:
|
|
assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha'
|
|
|
|
if len(keys_failed_to_match) > 0:
|
|
print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}")
|
|
|
|
return lora
|
|
|
|
|
|
def load_loras(names, multipliers=None):
|
|
already_loaded = {}
|
|
|
|
for lora in loaded_loras:
|
|
if lora.name in names:
|
|
already_loaded[lora.name] = lora
|
|
|
|
loaded_loras.clear()
|
|
|
|
loras_on_disk = [available_loras.get(name, None) for name in names]
|
|
if any([x is None for x in loras_on_disk]):
|
|
list_available_loras()
|
|
|
|
loras_on_disk = [available_loras.get(name, None) for name in names]
|
|
|
|
for i, name in enumerate(names):
|
|
lora = already_loaded.get(name, None)
|
|
|
|
lora_on_disk = loras_on_disk[i]
|
|
if lora_on_disk is not None:
|
|
if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime:
|
|
lora = load_lora(name, lora_on_disk.filename)
|
|
|
|
if lora is None:
|
|
print(f"Couldn't find Lora with name {name}")
|
|
continue
|
|
|
|
lora.multiplier = multipliers[i] if multipliers else 1.0
|
|
loaded_loras.append(lora)
|
|
|
|
|
|
def lora_forward(module, input, res):
|
|
if len(loaded_loras) == 0:
|
|
return res
|
|
|
|
lora_layer_name = getattr(module, 'lora_layer_name', None)
|
|
for lora in loaded_loras:
|
|
module = lora.modules.get(lora_layer_name, None)
|
|
if module is not None:
|
|
if shared.opts.lora_apply_to_outputs and res.shape == input.shape:
|
|
res = res + module.up(module.down(res)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
|
|
else:
|
|
res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
|
|
|
|
return res
|
|
|
|
|
|
def lora_Linear_forward(self, input):
|
|
return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input))
|
|
|
|
|
|
def lora_Conv2d_forward(self, input):
|
|
return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input))
|
|
|
|
|
|
def list_available_loras():
|
|
available_loras.clear()
|
|
|
|
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
|
|
|
|
candidates = \
|
|
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.pt'), recursive=True) + \
|
|
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.safetensors'), recursive=True) + \
|
|
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.ckpt'), recursive=True)
|
|
|
|
for filename in sorted(candidates):
|
|
if os.path.isdir(filename):
|
|
continue
|
|
|
|
name = os.path.splitext(os.path.basename(filename))[0]
|
|
|
|
available_loras[name] = LoraOnDisk(name, filename)
|
|
|
|
|
|
available_loras = {}
|
|
loaded_loras = []
|
|
|
|
list_available_loras()
|