WebUI/modules/sub_quadratic_attention.py
AUTOMATIC cdfcbd9959 Remove fallback for Protocol import and remove Protocol import and remove instances of Protocol in code
add some whitespace between functions to be in line with other code in the repo
2023-01-09 20:08:48 +03:00

215 lines
7.0 KiB
Python

# original source:
# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py
# license:
# MIT License (see Memory Efficient Attention under the Licenses section in the web UI interface for the full license)
# credit:
# Amin Rezaei (original author)
# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks)
# brkirch (modified to use torch.narrow instead of dynamic_slice implementation)
# implementation of:
# Self-attention Does Not Need O(n2) Memory":
# https://arxiv.org/abs/2112.05682v2
from functools import partial
import torch
from torch import Tensor
from torch.utils.checkpoint import checkpoint
import math
from typing import Optional, NamedTuple, List
def narrow_trunc(
input: Tensor,
dim: int,
start: int,
length: int
) -> Tensor:
return torch.narrow(input, dim, start, length if input.shape[dim] >= start + length else input.shape[dim] - start)
class AttnChunk(NamedTuple):
exp_values: Tensor
exp_weights_sum: Tensor
max_score: Tensor
class SummarizeChunk:
@staticmethod
def __call__(
query: Tensor,
key: Tensor,
value: Tensor,
) -> AttnChunk: ...
class ComputeQueryChunkAttn:
@staticmethod
def __call__(
query: Tensor,
key: Tensor,
value: Tensor,
) -> Tensor: ...
def _summarize_chunk(
query: Tensor,
key: Tensor,
value: Tensor,
scale: float,
) -> AttnChunk:
attn_weights = torch.baddbmm(
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
query,
key.transpose(1,2),
alpha=scale,
beta=0,
)
max_score, _ = torch.max(attn_weights, -1, keepdim=True)
max_score = max_score.detach()
exp_weights = torch.exp(attn_weights - max_score)
exp_values = torch.bmm(exp_weights, value)
max_score = max_score.squeeze(-1)
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
def _query_chunk_attention(
query: Tensor,
key: Tensor,
value: Tensor,
summarize_chunk: SummarizeChunk,
kv_chunk_size: int,
) -> Tensor:
batch_x_heads, k_tokens, k_channels_per_head = key.shape
_, _, v_channels_per_head = value.shape
def chunk_scanner(chunk_idx: int) -> AttnChunk:
key_chunk = narrow_trunc(
key,
1,
chunk_idx,
kv_chunk_size
)
value_chunk = narrow_trunc(
value,
1,
chunk_idx,
kv_chunk_size
)
return summarize_chunk(query, key_chunk, value_chunk)
chunks: List[AttnChunk] = [
chunk_scanner(chunk) for chunk in torch.arange(0, k_tokens, kv_chunk_size)
]
acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks)))
chunk_values, chunk_weights, chunk_max = acc_chunk
global_max, _ = torch.max(chunk_max, 0, keepdim=True)
max_diffs = torch.exp(chunk_max - global_max)
chunk_values *= torch.unsqueeze(max_diffs, -1)
chunk_weights *= max_diffs
all_values = chunk_values.sum(dim=0)
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
return all_values / all_weights
# TODO: refactor CrossAttention#get_attention_scores to share code with this
def _get_attention_scores_no_kv_chunking(
query: Tensor,
key: Tensor,
value: Tensor,
scale: float,
) -> Tensor:
attn_scores = torch.baddbmm(
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
query,
key.transpose(1,2),
alpha=scale,
beta=0,
)
attn_probs = attn_scores.softmax(dim=-1)
del attn_scores
hidden_states_slice = torch.bmm(attn_probs, value)
return hidden_states_slice
class ScannedChunk(NamedTuple):
chunk_idx: int
attn_chunk: AttnChunk
def efficient_dot_product_attention(
query: Tensor,
key: Tensor,
value: Tensor,
query_chunk_size=1024,
kv_chunk_size: Optional[int] = None,
kv_chunk_size_min: Optional[int] = None,
use_checkpoint=True,
):
"""Computes efficient dot-product attention given query, key, and value.
This is efficient version of attention presented in
https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements.
Args:
query: queries for calculating attention with shape of
`[batch * num_heads, tokens, channels_per_head]`.
key: keys for calculating attention with shape of
`[batch * num_heads, tokens, channels_per_head]`.
value: values to be used in attention with shape of
`[batch * num_heads, tokens, channels_per_head]`.
query_chunk_size: int: query chunks size
kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens)
kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done).
use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference)
Returns:
Output of shape `[batch * num_heads, query_tokens, channels_per_head]`.
"""
batch_x_heads, q_tokens, q_channels_per_head = query.shape
_, k_tokens, _ = key.shape
scale = q_channels_per_head ** -0.5
kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens)
if kv_chunk_size_min is not None:
kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min)
def get_query_chunk(chunk_idx: int) -> Tensor:
return narrow_trunc(
query,
1,
chunk_idx,
min(query_chunk_size, q_tokens)
)
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale)
summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
_get_attention_scores_no_kv_chunking,
scale=scale
) if k_tokens <= kv_chunk_size else (
# fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw)
partial(
_query_chunk_attention,
kv_chunk_size=kv_chunk_size,
summarize_chunk=summarize_chunk,
)
)
if q_tokens <= query_chunk_size:
# fast-path for when there's just 1 query chunk
return compute_query_chunk_attn(
query=query,
key=key,
value=value,
)
# TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance,
# and pass slices to be mutated, instead of torch.cat()ing the returned slices
res = torch.cat([
compute_query_chunk_attn(
query=get_query_chunk(i * query_chunk_size),
key=key,
value=value,
) for i in range(math.ceil(q_tokens / query_chunk_size))
], dim=1)
return res